• 제목/요약/키워드: smart structures

검색결과 2,158건 처리시간 0.022초

SWMAS의 성능 검증을 위한 구조물의 동특성 분석 (Identifying Dynamic Characteristics of Structures to Estimate the Performance of a Smart Wireless MA System)

  • 허광희;이우상;신재철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.227-234
    • /
    • 2005
  • 본 논문에서는 토목구조물의 스마트 모니터링 시스템을 위한 MEMS 형식의 가속도 센서를 부착한 스마트 무선 센서 장치를 설계하고 제작하였다. 그리고 다양한 성능 실험을 통하여 장치의 성능을 평가하였다. 첫째 장치에 부착한 가속도 센서의 민감도와 분해능, 잡음을 평가하기 위한 실험을 실시하였다. 실험의 결과는 센서의 데이터 쉬트의 값과 비교하여 센서의 성능을 평가 하였다. 두 번째로는 무선 센서 장치를 이용하여 상시 가진을 받는 모형구조물의 동특성을 NExT와 ERA 알고리즘을 사용하여 분석하였다. 이와 같이 분석된 동적 특성은 유한요소 해석 결과와 상호 비교하여 그 유용성을 입증하였고, 스마트 모니터링 시스템에 무선 센서 장치가 효과적으로 적용될 수 있는 가능성을 제시하였다.

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

  • Chahar, Ravindra Singh;Ravi Kumar, B.
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.387-396
    • /
    • 2019
  • This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.

하이브리드 스마트 구조물의 진동 제어 (Vibration Control of Hybrid Smart Structures)

  • 박동원;박용군;박노준;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.130-135
    • /
    • 1996
  • This paper presents a proof-concept investigation on the active vibration control of two hybrid smart structures (HSSs). The first one is consisting of a piezoelectric film (PF) actuator and an electro-rheological fluid(ERF) actuator, and the other is featured by a piezoceramic (PZT) actuator and a shape memory alloy (SMA) actuator. For the PF/ERF hybrid smart structure, both the increment of the damping ratios and the suppression of the tip deflections are evaluated in order to demonstrate control effectiveness of the PF actuator and ERF actuator and the hybrid actuation. For the PZT/SMA hybrid smart structure, the PZT actuator takes account of the high frequency excitation, while the SMA actuator exerts large vibration control force. The experimental results exhibit superior abilities of the hybrid actuation systems to tailor elastodynamic responses of the HSS rather than a single class of actuation system alone.

  • PDF

Issues in structural health monitoring employing smart sensors

  • Nagayama, T.;Sim, S.H.;Miyamori, Y.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.299-320
    • /
    • 2007
  • Smart sensors densely distributed over structures can provide rich information for structural monitoring using their onboard wireless communication and computational capabilities. However, issues such as time synchronization error, data loss, and dealing with large amounts of harvested data have limited the implementation of full-fledged systems. Limited network resources (e.g. battery power, storage space, bandwidth, etc.) make these issues quite challenging. This paper first investigates the effects of time synchronization error and data loss, aiming to clarify requirements on synchronization accuracy and communication reliability in SHM applications. Coordinated computing is then examined as a way to manage large amounts of data.

Synthetic bio-actuators and their applications in biomedicine

  • Neiman, Veronica J.;Varghese, Shyni
    • Smart Structures and Systems
    • /
    • 제7권3호
    • /
    • pp.185-198
    • /
    • 2011
  • The promise of biomimetic smart structures that can function as sensors and actuators in biomedicine is enormous. Technological development in the field of stimuli-responsive shape memory polymers have opened up a new avenue of applications for polymer-based synthetic actuators. Such synthetic actuators mimic various attributes of living organisms including responsiveness to stimuli, shape memory, selectivity, motility, and organization. This article briefly reviews various stimuli-responsive shape memory polymers and their application as bioactuators. Although the technological advancements have prototyped the potential applications of these smart materials, their widespread commercialization depends on many factors such as sensitivity, versatility, moldability, robustness, and cost.

스마트 TMD의 지진응답 제어성능 실험적 검토 (Experimental Evaluation of Seismic Response Control Performance of Smart TMD)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.49-56
    • /
    • 2022
  • Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.