• Title/Summary/Keyword: smart monitoring

Search Result 1,900, Processing Time 0.027 seconds

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Smart Information Monitoring Technology (스마트 정보 모니터링 기술)

  • Kang, Man-Mo;Lee, Dong-Hyung;Koo, Ja-Rok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.225-233
    • /
    • 2010
  • Recently, in the field of Smart Grid, Smart Home Network, Ubiquitous Computing, etc. we have continued to study Smart Information Monitoring Technology(SIMT) which exchange, control and monitor information collected and processed by need in real-time and two-way. In this paper, we understand application products or recent trends of SIMT for Energy, U-Farm, Vehicle Information and Home Network. Specially, we explain Google PowerMeter which exchange information with Smart Meter of core part of the smart grid at real-time, Real-time Monitoring System(RMS) for U-Farm, RMS for vehicle status Information. we subscribe Smart Information Monitoring Technology application based on ZigBee of low price, low power or related work. Finally we subscribe actual proof construction situation of Jesu for smart grid.

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

A Study of Sensing Locations for ECG Monitoring Clothing based on the Skin Change rate (체표 변화에 기반한 심전도 모니터링 의류의 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sang woo
    • Fashion & Textile Research Journal
    • /
    • v.17 no.5
    • /
    • pp.844-853
    • /
    • 2015
  • Recently, according to change of lifestyle and increase of concerning in health, needs of the smart clothing based on the vital sign monitoring have increased. Along with this trend, smart clothing for ECG monitoring has been studied various way as textile electrode, clothing design and so on. Smart clothing for ECG monitoring can become a comfortable system which enables continuous vital sign monitoring in daily use. But, smart clothing for ECG monitoring has a weakness on artifact during motion. One of the motion artifact caused by shifting of the electrode position was affected skin change by motion. The aim of this study was to suggest electrode locations for clothing of ECG monitoring to reduce of motion artifacts. Therefore, change of skin surface during the movement were measured and analyzed in order to find location to minimize motion artifacts in ECG monitoring clothing by 3D motion capture. For the experiment, the subjects consisted of 5 males and 5 females in their 20' with average physique. As a result, the optimal location for ECG monitoring was deducted under the bust line and scapula which have least motion artifact. These locations were abstracted to be least affected by movement in this research.

Design and Development of a Monitoring System based on Smart Device for Service Robot Applications

  • Lee, Jun;Seo, Yong-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Smart device has become an affordable main computing resource for robotic ap-plications in accordance with a fast growth of mobile internet environment. Since the computing power of smart device has been increased, smart device based ro-bot system attempts to replace traditional robot applications with laptop-based system. Methodologies for acquisition of remote sensory information and control of various types of robots using smart device have been proposed recently. In this paper, we propose a robot control system using a monitoring program and a communication protocol. The proposed system is a combination of an educa-tional programming oriented robot named EPOR-S. as small service robot plat-form and a smart device. Through a simulation study using image processing, the feasibility of combination of the proposed robot monitoring program and control system was verified.

A Methodology to Quantifying Benefit for Implementing Smart-Pipe to Lifeline Systems (라이프라인의 Smart-Pipe 시스템 도입을 위한 이익정량화 방안)

  • Jun, Hwan-Don;Kim, Joong-Hoon;Cho, Moon-Soo;Baek, Chun-Woo;Yoo, Do-Guen
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.61-66
    • /
    • 2008
  • As the water distribution system which is one of the critical lifeline system is deteriorated and pipe failures occur frequently, the more efficient pipe monitoring system becomes a critical issue in the water industry. One of the pipe monitoring systems is called "Smart-pipe System" which is permanent, comprehensive and an automated SIM (Structural Integrity Monitoring) system and has superiorities to existing monitoring system. To implement a smart-pipe system on a water distribution system, assessment of its indirect benefit obtaining from smartpipe such as the ratio of preventing water main failures must be preceded. However, only some researches on this field have been performed. In this paper, the concept of smart-pipe system is compared with the current monitoring systems for a water distribution system, and a method to quantify its benefit using the inconvenient time for customers is suggested. The suggested method was applied to a real water distribution system to estimate its applicability and benefit.

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Implementation of Smart Monitoring System based on Breathing Sensor

  • Cha, jin-gil;Kim, Seong-Kweon
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.36-41
    • /
    • 2022
  • In the 21st century, information collection and information provision based on digital informatization and intelligent automation are emerging as one of the social problems in the society for the elderly and the vulnerable groups in the welfare society including the disabled, and various methods are being studied to find realistic alternatives. Among these factors, the problem of the elderly living alone is emerging as the most serious, and as a realistic approach to solve some problems by applying information devices, it is a monitoring system using the Internet of Things(IoT). The need for an optimized system is emerging. In this study, the state of the elderly and the elderly living alone can be measured remotely by applying IoT technology. We present the research cases of a Breathing Sensor-based Smart Monitoring System that is used as a smart information system and used as a monitoring system for the elderly and infirm when it is identified as deceased through state detection

The Study for Privacy Trust Zone of Smart Monitoring in Mobile Environment (모바일 환경에서 스마트한 모니터링이 가능한 프라이버시 신뢰 존 정보 제공 시스템에 관한 연구)

  • Kang, Jang-Mook;Lee, Woo-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • Mobile devices like iphone, ipad, kindle, and PDA are used as everyday tool. In the mobile environment, smart phones and other mobile units are also used as a tool for protection or infringement of personal information. Therefore, smart monitoring technology is required to protect personal information and privacy. On the other hand, with smart phones and the mobile environment, diverse application technologies are realized on hardware and software platforms. Therefore, this paper designs the network structure that forms privacy trust zone, and based on this, deals with the monitoring and monitoring prevention system with a focus on CCTV, through which this paper proposes a system that provides privacy trust zone information and its utilization which is capable of smart monitoring.

Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.489-504
    • /
    • 2012
  • For the safety of prestressed structures such as cable-stayed bridges and prestressed concrete bridges, it is very important to ensure the prestress force of cable or tendon. The loss of prestress force could significantly reduce load carrying capacity of the structure and even result in structural collapse. The objective of this study is to present a smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Firstly, a smart PZT-interface is newly designed for sensitively monitoring of electro-mechanical impedance changes in tendon-anchorage subsystem. To analyze the effect of prestress force, an analytical model of tendon-anchorage is described regarding to the relationship between prestress force and structural parameters of the anchorage contact region. Based on the analytical model, an impedance-based method for monitoring of prestress-loss is conducted using the impedance-sensitive PZT-interface. Secondly, wireless impedance sensor node working on Imote2 platforms, which is interacted with the smart PZT-interface, is outlined. Finally, experiment on a lab-scale tendon-anchorage of a prestressed concrete girder is conducted to evaluate the performance of the smart PZT-interface along with the wireless impedance sensor node on prestress-loss detection. Frequency shift and cross correlation deviation of impedance signature are utilized to estimate impedance variation due to prestress-loss.