• Title/Summary/Keyword: smart glass material

Search Result 40, Processing Time 0.034 seconds

Overview and Future Concerns for Recycling Glass Wastes (폐(廢)스마트 유리제품(琉璃製品) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Hong, Hyun Seon;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • Glass materials possess unique functional characteristics of ceramics different from those of metals, which has marked glass as one of the mainstay materials in the history of mankind. Nowadays, industrial sophistication necessitates comparable "smart" attributes of glass materials as a significantly advanced form of sophistication. Smart glasses are increasingly applied in many state-of-the-art digital appliances such as displays and semiconductors and waste is also expected to accumulate therefrom in the near future: More than 60,000 tons of smart glass wastes were reported as of 2012, for example. In the present paper, current status of domestic Korean smart glass industry and related recycling enterprise have been comprehensively investigated. Finally, Korean domestic smart glass recycling technology and its future prospect are also briefly presented.

Thermoluminescence Characteristics of Smart Phone Tempered Glass (스마트폰 강화유리의 열형광 특성)

  • Je, Jaeyong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.433-437
    • /
    • 2020
  • Principles of Radiation Detection and measurement include luminescence, ionization and chemical reactions. In this study, thermoluminescent properties were analyzed by exposure radiation on the glass for protective glass of smart phone. In order to analyze the thermoluminescent characteristics by radiation, 6 MV X-ray 100 cGy was irradiated to the powder annealing at 300 ℃ by grinding the tempered glass and original tempered glass. As a result of measuring the amount of thermoluminescent respectively irradiated material, the thermoluminescent increased by 3 times in the tempered glass, and when the tempered glass was grinding by powder the thermoluminescent was 2.4 times increased. Based on these results, the liquid crystal protective glass of the smart phone is evaluated as a tracer material to evaluate the radiation exposure and dose of the personal radiation monitoring.

A Study on the Durability Complement of Lightweight Photovoltaic Module (경량화 태양광 모듈의 내구성 보완에 관한 연구)

  • Jeong, Taewung;Park, Min-Joon;Kim, Hanjun;Song, Jinho;Moon, Daehan;Hong, Kuen Kee;Jeong, Chaehwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

Development of the Smart Concrete Using Electric Resistance (전기 저항을 이용한 스마트 콘크리트의 개발)

  • 김화중;김이성;김형준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.447-453
    • /
    • 2004
  • Various structural materials have been used in construction projects using stones, connotes, and steels materials. Among of these projects, concretes may use widely because concretes have high compressive strength, and comparatively easy maintenance and management. Reinforced concrete Buildings will be deteriorated as time passed. These problems will be accelerated by propagation of cracks. In order to manage such cracks, time, efforts and expense are required. In this study, leakages of fluorescence and adhesive material were investigated using glass sensors that were embedded in a model beam and column. In addition, currents in glass pipe sensor were observed to find leakage of liquid in glass pipes. Progressive cracks were generated by fracture of glass me sensor. In this investigation, a reinforcement clothing system was wrapped for a glass pipe sensor, The glass pipe sensor that can make control and reinforce cracks simultaneously.

  • PDF

Development of the Activity Type Smart Concrete using the Glass Pipe

  • Kim, Ie-Sung;Kim, Wha-Jung
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.29-32
    • /
    • 2005
  • A various structural materials are used in construction projects such as a stone, concrete, steel materials. Between of them, concrete are used widely. The compressive strength of concrete is high, and its maintenance and management is comparatively easy. The R.C Building will be superannuated as time passes. This program is generated by propagation of cracks. In order to manage such cracks, time and efforts, expense, etc. are required. In this study, glass sensors were embedding in a model beam and column and leakage of fluorescence and adhesive material was investigated. Further, currents in glass pipe were observed to find the leakage of liquid in glass pipes. Progressive cracks generated by cause the fracture of glass pipes. Therefore, the liquid become to flow and electric current stops, and the cracked part of the member can be found easily. Moreover, the adhesive delays progressive cracking system that responds in air, and the life of a structure can be made to extend. The purpose of this research is to develop of low price sensors that can perform of self-diagnosis in addition to ability of concrete repair concrete to damage.

Localisation of embedded water drop in glass composite using THz spectroscopy

  • Mieloszyk, Magdalena;Majewska, Katarzyna;Ostachowicz, Wieslaw
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.751-759
    • /
    • 2018
  • Glass fibre reinforced polymers (GFRP) are widely exploited in many industrial branches. Due to this Structural Health Monitoring systems containing embedded fibre optics sensors are applied. One of the problems that can influence on composite element durability is water contamination that can be introduced into material structure during manufacturing. Such inclusion can be a damage origin significantly decreasing mechanical properties of an element. A non-destructive method that can be applied for inspection of an internal structure of elements is THz spectroscopy. It can be used for identifications of material discontinuities that results in changes of absorption, refractive index or scattering of propagating THz waves. The limitations of THz propagation through water makes this technique a promising solution for detection of a water inclusion. The paper presents an application of THz spectroscopy for detection and localisation of a water drop inclusion embedded in a GFRP material between two fibre optics with fibre Bragg grating sensors. The proposed filtering method allowed to determine a 3D shape of the water drop.

Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition (섬유 강화 지능형 연성 복합재 구동기의 재료구성에 따른 거동특성 평가)

  • Han, Min-Woo;Kim, Hyung-Il;Song, Sung-Hyuk;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.81-85
    • /
    • 2017
  • Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

Fiber Optic Smart Monitoring of Concrete Beam Retrofitted by Carbon and Glass Sheets

  • Kim Ki-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.486-489
    • /
    • 2004
  • In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

  • PDF

The Deposition and Characterization of Electrochromic Tungsten Oxide Thin Films (산화텅스텐 박막의 제조 및 전기변색 특성)

  • 하승호;이진민;박승희;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.120-123
    • /
    • 1993
  • This paper describes the deposition and characteristics of electrochromic tungsten oxide thin films for electrochromic smart windows. Tungsten Oxide thin films(WO$_3$) are deposited by thermal evaporation techniques. By varying deposition parameters, WO$_3$ thin films exhibit different optical properties. The electrochromic devices are consist of ITO glass/ WO$_3$ thin films/ LiClO$_4$-propylene carbonate electrolyte/ counter electrode. The electrochromic properties of tungsten oxide thin films with different deposition condition ale investigated.

  • PDF