• 제목/요약/키워드: smart fluids

검색결과 64건 처리시간 0.025초

전기유동유체와 압전필름 액튜에이터를 이용한 스마트 외팔보의 진동제어 (Vibration Control of a Smart Cantilevered Beam Using Electro-Rheological Fluids and Piezoelectric Films Actuators)

  • Park, Y.K.;Park, S.B.
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.119-125
    • /
    • 1997
  • This paper deals with an experimental investigation on an active vibration control of ahybrid smart structure(HSS) via an electro-rheological fluid actuator(ERFA) and a piezoelectric film actuator(PFA). Firstly, an HSS is constructed by inserting a silicone oil-based electro-rheological fluid into a hollow can- tilevered beam and perfectly bonding piezoelectric films ofn the upper and lower surfaces of the beam as an actuator and a sensor, respectively. The control scheme of the ERFA tuning stiffness and damping charac- teristics of the HSS with imposed electric fields is formulated as a function of excitation frequencies on the basis of field-dependent respnses. On the other hand, as for the control scheme of the PFA permitting control voltages to generate axial forces or bending moments for suppressing deflections of the HSS, a neuro sliding mode controller(NSC) is employed. Furthermore, an experimental implementation activating the ERFA and the PFA independently is established to carry out an active vibration control in both the transient and forced vibrations. The experimental results exhibit a superior ability of the gtbrid actuation system to tailor elastodynamic response characteristics of the HSS rather than a single class of actuator system alone.

  • PDF

전기 유동유체를 함유하는 지능외팔보의 진동특성 및 제어 실험적 고찰 (Vibration Characteristics and Control of Smart Cantilever Beams Containing an Electro-Rheological Fluid An Experimental Investigation)

  • 최승복;박용군;서문석
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1649-1657
    • /
    • 1993
  • This paper reports on a proof-of-concept experimental investigation focused on evaluating the vibration characteristics and control of smart hollow cantilever beams filled with an electro-rheological(ER) fluid. The beams are considered to be of uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Electric field-dependent natural frequencies, loss factors and complex moduli are evaluated and compared among three different beams : two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Modal characteristics of the beams are observed in both the absence and the presence of electric potentials. It is also shown that by constructing active control algorithm the removal of structural resonances and the suppression of tip deflection are obtained. This result provides the feasiblility of ER fluids as an active vibration control element.

충격파 저감을 위한 ER 지능구조물 (ER Smart Structures for Shock Wave Reduction)

  • 김재환;김지선;최승복;김경수
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.679-687
    • /
    • 2003
  • Shock wave reduction in electrorheological(ER) smart structures is studied. ER insert is a composite structure comprising two elastic outer layers between which is sandwiched layer of ER fluid. When a voltage is applied across the outer layers. the shear modulus and the loss factor of the ER fluid are enabled, and thus the dynamic properties of the composite structure is altered. For the shock wave reduction in a hull mount of a submerged structure, ER inserts are made on the hull mount structure. To investigate the ER insert shape. many types of ER insert pattern are considered. Modal test of ER insert structures is performed to obtain the mode shapes, natural frequencies and the acceleration transmissibility. The acceleration transmissibility is reduced at such a frequency region when an electric field is applied. It is observed that the natural frequencies and mode shapes can be tunable by applying electric field. The ER-inserted hull mount is installed in an integrated system and the overall performance of shock wave reduction is tested. The possibility of shock wave reduction in the hull mount is demonstrated.

Simulation study of magnetorheological testing cell design by incorporating all basic operating modes

  • Mughni, Mohd J.;Mazlan, Saiful A.;Zamzuri, Hairi;Yazid, Izyan I.M.;Rahman, Mohd A.A.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.901-916
    • /
    • 2014
  • Magnetorheological (MR) fluid is one of the field-responsive fluids that is of interest to many researchers due to its high yield stress value, which depends on the magnetic field strength. Similar to electrorheological (ER) fluid, the combination of working modes is one of the techniques to increase the performance of the fluids with limited focus on MR fluids. In this paper, a novel MR testing cell incorporated with valve, shear and squeeze operational modes is designed and constructed in order to investigate the behaviour of MR fluid in combined mode. The magnetic field distribution in the design concept was analyzed using finite element method in order to verify the effective areas of each mode have the acceptable range of flux density. The annular gap of valve and shear were fixed at 1 mm, while the squeeze gap between the parallel circular surfaces was varied up to 20 mm. Three different coil configurations, which were made up from 23 SWG copper wires were set up in the MR cell. The simulation results indicated that the magnetic field distributed in the squeeze gap was the highest among the other gaps with all coils were subjected to a constant applied current of 1 A. Moreover, the magnetic flux densities in all gaps were in a good range of magnitude based on the simulations that validated the proposed design concept. Hence, the 3D model of the MR testing cell was designed using Solidworks for manufacturing processes.

CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측 (Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis)

  • 정용운;전용민;양수석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • 한국정밀공학회지
    • /
    • 제10권1호
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

MR 유체를 이용한 햅틱 디스플레이의 질감 반응 특성 (Tactile Response Characteristics of Haptic Displays based on Magneto-Rheological Fluids)

  • 장민규;최재영;이철희
    • Tribology and Lubricants
    • /
    • 제26권3호
    • /
    • pp.184-189
    • /
    • 2010
  • In this paper, tactile response characteristics in medical haptic interface are investigated to characterize the feeling of contact between the finger skin and the organic tissue when a finger is dragged over tissue. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, curvature and friction. Thus, the tactile display provides the surface information of organic tissue to the surgeon using different actuating mechanisms ranging from the conventional mechanical motor to the smart material actuators. In order to investigate the compliance feeling of human finger's touch, vertical force responses of the tactile display under the various magnetic fields have been assessed. Also, frictional resistive force responses of the tactile display are investigated to simulate the action of finger's dragging. From the results, different tactile feelings are observed as the applied magnetic field is varied and arrayed magnetic poles combinations. This research gives a smart technology of tactile displaying.

MR 유체의 동특성 (Identification of Dynamic property of MR Fluid)

  • 안영공;하종용;안경관;양보석;백석준언;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.576-579
    • /
    • 2005
  • MR (Magneto Rheological) fluids are well known as a smart fluid and their application researches to control vibration have been conducted by many researchers. However, their dynamic properties have not been identified clearly yet. Therefore, the MR effect is investigated by using a rotational viscometer and a single degree of freedom system with an MR damper. The results obtained from the experimental study show that stiffness and viscous damping coefficients of the system with an MR damper are changed according to the variation of the applied current.

  • PDF

틸트로터 무인기의 날개-나셀 공력해석 (Aerodynamic Analysis on Wing-Nacelle of Tiltrotor UAV)

  • 최성욱;김철완;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.27-34
    • /
    • 2004
  • In the Smart UAV Development Program, one of the 21c Frontier R&D Program, the tiltrotor has been studied as the concept of vehicle. The tiltrortor aircraft take-off and land in rotary wing mode like conventional helicopter, and cruise in fixed wing mode like conventional propeller airplane. For the conversion of the flight mode from helicopter to airplane, the nacelle located at wing tip has to be tilted from about 90 degrees of helicopter mode to about 0 degree of airplane mode. In this study, the aerodynamic characteristics of the wing with tilted nacelle is investigated using computation fluid dynamics technique. In order to feature out aerodynamic interferences between wing and nacelle, the flow calculations are conducted for the wing and the nacelle separately and for the combined geometry of wing and nacelle, respectively. Through this computations, not only the aerodynamic data-base for the wing-nacelle is constructed but also its contribution to the configuration design of the wing-nacelle is anticipated.

  • PDF

Parametric density concept for long-range pipeline health monitoring

  • Na, Won-Bae;Yoon, Han-Sam
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.357-372
    • /
    • 2007
  • Parametric density concept is proposed for a long-range pipeline health monitoring. This concept is designed to obtain the attenuation of ultrasonic guided waves propagating in underwater pipelines without complicated calculation of attenuation dispersion curves. For the study, three different pipe materials such as aluminum, cast iron, and steel are considered, ten different transporting fluids are assumed, and four different geometric pipe dimensions are adopted. It is shown that the attenuation values based on the parametric density concept reasonably match with the attenuation values obtained from dispersion curves; hence, its efficiency is proved. With this concept, field engineers or inspectors associated with long-range pipeline health monitoring would take the advantage of easier capturing wave attenuation value, which is a critical variable to decide sensor location or sensors interval.