• Title/Summary/Keyword: smart composite

Search Result 464, Processing Time 0.029 seconds

Flutter Safety Analysis of a Composite Smart UAV with T-tail Configuration (T-형 꼬리날개를 갖는 복합재 스마트 무인기의 플러터 안전성 해석)

  • Kim, D.H.;Yang, Y.J.;Jung, S.U.;Kim, S.J.;Choi, S.C.;Kim, S.C.;Shin, J.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.1
    • /
    • pp.20-31
    • /
    • 2005
  • In this study, subsonic flutter analyses have been conducted for a composite smart UAV with T-tail configuration at the critical flight condition. Detailed three-dimensional finite element model for dynamic analysis is constructed including its nonstructural elements corresponding to installed electronic equipments and fuels. Computational structural dynamics and aeroelastic techniques are conducted using MSC/NASTRAN and originally developed in-house codes. The results for fundamental vibration characteristics and flutter instabilities are presented and compared to each other for different fuel conditions.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Stochastic free vibration analysis of smart random composite plates

  • Singh, B.N.;Vyas, N.;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.481-506
    • /
    • 2009
  • The present study is concerned with the stochastic linear free vibration study of laminated composite plate embedded with piezoelectric layers with random material properties. The system equations are derived using higher order shear deformation theory. The lamina material properties of the laminate are modeled as basic random variables for accurate prediction of the system behavior. A $C^0$ finite element is used for spatial descretization of the laminate. First order Taylor series based mean centered perturbation technique in conjunction with finite element method is outlined for the problem. The outlined probabilistic approach is used to obtain typical numerical results, i.e., the mean and standard deviation of natural frequency. Different combinations of simply supported, clamped and free boundary conditions are considered. The effect of side to thickness ratio, aspect ratio, lamination scheme on scattering of natural frequency is studied. The results are compared with those available in literature and an independent Monte Carlo simulation.

Web based Online Real-time Reliability Integrated Information System in Composite Power System Considering Wind Turbine Generators (풍력발전기를 고려한 복합전력계통의 웹기반 온라인 실시간 신뢰도 정보 시스템의 개발)

  • Cho, Kyeong-Hee;Choi, Jae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1305-1313
    • /
    • 2011
  • Web based online real-time reliability integrated information system is asked rapidly for more efficiency and demand response in recent. As the utilization of renewable resources has been receiving considerable attention in recent years, the information system requirement is increased. Specially, the reliability information system is more important for implementing the smart grid. This paper describes architecture of the WORRIS(Web based Online Real-time Reliability Integrated Information System) Version 7.0 system that simulates the reliability indices in composite power system considering wind turbine generators(WTG) developed successfully in this paper. And we had simulated the case study using Jeju island power system data.

A Study on Heat Dissipation Characteristics of PMMA Composite Films with Phase Change Material (상변화물질을 이용한 PMMA 복합필름의 방열 성능 향상에 관한 연구)

  • Kwon, Junhyuk;Yoon, Bumyong;Cho, Seung-hyun;Lee, Stephanie K.;Kim, Hyung-ick;Kim, Donghyun;Park, Kyungui;Suhr, Jonghwan
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.288-296
    • /
    • 2017
  • The focus of this study is to experimentally investigate the heat dissipation characteristics of poly (methyl methacrylate) (PMMA) composite films with phase change materials (PCM) to resolve heat build-up problems encountered in various electronic devices. In this study, two different types of phase change materials were used to fabricate the composite films by compression molding method and PCM paste sealing method then compared. It was observed in this study that the heat dissipation capability of PCM/PMMA composite films was remarkably enhanced by applying graphite sheet or graphene film into the composite due to their high thermal conductivity. These PCM/ PMMA composite films were attached on the hot spot inside smart phone and tested its surface temperature change according to time. The heat dissipation capability of PCM/PMMA composite film incorporated smart phone was increased 154% and hybrid PCM/PMMA composite film incorporated smart phone was increased 286% over the reference, respectively.

Active vibration control of smart composite structures in hygrothermal environment

  • Mahato, P.K.;Maiti, D.K.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • The composite materials may be exposed to environmental (thermal or hygral or both) condition during their service life. The effect of environmental condition is usually adverse from the point of view of design of composite structures. In the present research study the effect of hygrothermal condition on the design of laminated composite structures is investigated. The active fiber composite (AFC) which may be utilized as actuator or sensor is considered in the present analysis. The sensor layer is used to sense the level of response of the composite structures. The sensed voltage is fed back to the actuator through the controller. In this study both displacement and velocity feedback controllers are employed to reduce the response of the composite laminate within acceptable limit. The Newmark direct time integration scheme is employed along with modal superposition method to improve the computational efficiency. It is observed from the numerical study that the laminated composite structures become weak in the presence of hygrothermal load. The response of the structure can be brought to the acceptable level once the AFC layer is activated through the feedback loop.

Experimental Study on Shape Control of Smart Composite Structure with SMA actuators (SMA 작동기를 이용한 스마트 복합재 구조의 형상 제어에 관한 실험적 연구)

  • Yang Seung-Man;Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.127-130
    • /
    • 2004
  • In this paper, active shape control of composite structure actuated by shape memory alloy (SMA) wires is presented. Hybrid composite structure was established by attaching SMA actuators on the surfaces of graphite/epoxy composite beam using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperatures. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For faster and more accurate shape or deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

  • PDF

Structural Vibration Analysis for a Composite Smart UAV Considering Dynamic Hub-loads of the Tilt-rotor (틸트로터 허브 동하중을 고려한 복합재 스마트 무인기 진동해석)

  • Kim, Dong-Hyun;Jung, Se-Un;Koo, Kyo-Nam;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Ju-Young;Choi, Ik-Hyeon;Lee, Jung-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.63-71
    • /
    • 2005
  • In this study, structural vibration analyses of a composite smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt-rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present smart UAV(TR-S2) structural model is constructed as full 3D configurations with both the helicopter flight mode and the airplane flight mode. Modal based transient response and frequency response analyses are used to efficiently investigate vibration characteristics of structure and installed electronic equipments. It is typically shown that the helicopter flight mode with the 90-deg tilting angle is the most critical case for the induced vibration of installed electronic equipments in the front.