• Title/Summary/Keyword: smart antennas

Search Result 65, Processing Time 0.021 seconds

Design of a Compact MIMO Antenna for Smart Glasses (스마트 안경용 초소형 MIMO 안테나 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.351-354
    • /
    • 2017
  • In this paper, a compact MIMO(Multiple Input Multiple Output) antenna for smart glasses is proposed. The proposed MIMO antenna is designed using T-shaped isolator inserted between two closely located Inverted-F Antenna(IFA) and using two slots located in the ground for isolation enhancement and impedance matching characteristic. The proposed antenna has only the overall dimensions of $35mm{\times}9mm{\times}0.8mm$ and operates in the 2.4 GHz industrial, scientific, and medical(ISM) band. To verify human body effect, the phantom is used for antenna performance. The measured specific absorption rate(SAR) value is 1.38 W/kg with an input power of 18 dBm. The performance of the proposed antenna is compared with that of previous works for verification.

Performance of a Rectangular Smart Antenna in CDMA Basestation (CDMA 기지국에 설치된 평면 스마트 안테나의 성능 고찰)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.323-330
    • /
    • 2007
  • Performance indicators such as output SNR, SIR, SINR for rectangular smart antennas in CDMA basestations have been derived. Simulations have been carried out to find the rectangular smart antenna performance while varying the input SNR, number of antenna elements, and the interferers' spatial distributions. Simplified Conjugate Gradient Method was chosen as the underlying beam forming algorithm. It has been shown that the performance of a rectangular smart antenna is similar to that of the linear one having the same number of elements when the interferers are randomly distributed over the whole azimuth angle range.

New Blind LMS and MMSE Algorithms for Smart Antenna Applications (스마트안테나용 블라인드 LMS 및 MMSE 알고리즘)

  • Tuan, Le-Minh;Park, Jaedon;Giwan Yoon;Kim, Jewoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.315-318
    • /
    • 2001
  • We propose two new blind LMS and MMSE algorithms called projection-based least mean square (PB-LMS) and projection-based minimum mean square error (PB-MMSE) for smart antennas. Both algorithms employ the finite constellation property of digital signal to transform the conventional LMS and MMSE algorithms into blind algorithms. Computer simulations were carried out in the AWGN channel and Rayleigh fading channel with AWGN in CDMA environment to verify the performance of the two proposed algorithms.

  • PDF

A MIMO Adaptive Beanforming Algorithm for Smart Antennas (스마트안테나용 MIMO 적응빔형성 알고리즘)

  • Park, Jaedon;Tuan, Le-Minh;Giwan Yoon;Kim, Jewoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.323-326
    • /
    • 2001
  • We propose a new MUD adaptive beamforming algorithm. It requires no reference signal and consists of two Processing stages. The first stage performs a scan function, and the second stage performs an adaptive beamforming algorithm. Computer simulations, considering multi-path Rayleigh Fading Channel in CUMA, are presented to verify the performance.

  • PDF

A novel class of LMS Algorithms with exponential step size for Smart Antenna Applications (Exponential 스텝사이즈를 이용한 스마트안테나용 블라인드 LMS 알고리즘)

  • Tuan, Le-Minh;Park, Jaedon;Giwan Yoon;Kim, Jewoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.331-335
    • /
    • 2001
  • In this paper, we propose two novel blind LMS algorithms, called exponential step sire LMS algorithms (ES-LMS), for adaptive array antennas whose convergence speed is increased, hence they are much more capable of tracking the desired signal than the conventional LMS algorithms. Both of the algorithms require neither spatial knowledge nor reference signals since they use the finite symbol property of digital signal. Computer simulations were carried cot in CDMA environment affected by multi-path Rayleigh fading to verify the performance of the two proposed algorithms.

  • PDF

Capacity Analysis of Smart Antenna Systems with Macro Diversity (스마트 안테나를 적용한 기지국 다이버시티에 의한 셀의 용량분석 연구)

  • 이명원;한진규;육종관;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.212-219
    • /
    • 2002
  • In this paper, how to perform beamforming and power control for the systems with smart antennas is introduced in consideration of macro-diversity, and cell capacity of the systems is analyzed. In the result, as the number of the base stations linked to mobiles increases, capacity increases in the reverse link. On the other hand, macro diversity causes capacity loss in forward link. It is expected that the result of this work may be used in designing the next generation mobile communication systems for high quality services such as multi media data and wireless internet etc.

Estimation Technique of Direction of Arrival for Location Service in the next Generation Mobile Communication System (차세대 이동통신시스템에서 Location Service를 위한 신호도착방향 추정기법)

  • 이성로;최명수;김철희;안동순;김종화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.284-293
    • /
    • 2003
  • Location service is usually provided by the GPS method using satellites. In the next generation mobile communication systems which use smart antennas, location service can be accomplished using direction of arrival (DOA) estimation techniques. In this paper, we propose a DOA estimation technique for the location service of the next generation mobile communication systems and investigate the validity of the proposed technique through computer simulation. First, DOA estimation problems of distributed sources are considered using vortical and horizontal array processors which are orthogonal to each other. The DOA of the elevation angle is estimated by the vertical array processor and then that of the azimuth angle is estimated by the horizontal array processor. Finally, the procedures of the location service for specific signal sources using three smart antennas are exhibited by computer simulation to show that the proposed DOA estimation technique can be used for the location service in the next generation mobile communication systems.

A Subcarrier-based Virtual Multiple Antenna Technique for OFDM Cellular Systems (OFDM 셀룰러 시스템에서 부반송파 기반의 가상 다중안테나 기법)

  • Lee, Kyu-In;Ko, Hyun-Soo;Woo, Kyung-Soo;Ko, Yo-Han;Kim, Yeong-Jun;Ahn, Jae-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.981-990
    • /
    • 2006
  • In this paper, we introduce the concept of a subcarrier-based virtual multiple antennas (SV-MIMO) for OFDM cellular systems, where the multiple antenna techniques are performed on a set of subcarriers, not on the actual multiple antennas. The virtual multiple antenna system can support multiple users simultaneously as well as reduce inter-cell interference (ICI) form adjacent cells with a single antenna. Also, this technique is easily extended to multiple antenna environments. The virtual multiple antenna techniques can be divided into a virtual smart antenna technique and a virtual MIMO technique. Especially, this method effectively reduces ICI at cell boundary with frequency reuse factor equal to 1, and can support flexible resource allocation depending on the amount of interference. It is shown by simulation that the proposed method is superior to conventional method under the same condition of data transmission.

Design and Fabrication of Composite Smart Structures for Communication (복합재료를 이용한 통신용 지능구조물 설계 및 제작)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

A Direction-of-Arrival Estimation Based Adaptive Beamforming Algorithm for OFDMA Smart Antenna Systems (OFDMA 스마트 안테나 시스템을 위한 도래각 추정 기반의 적응 빔 형성 알고리즘)

  • Yun, Young-Ho;Park, Yoon-Ok;Park, Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1214-1222
    • /
    • 2006
  • In this paper, an efficient direction-r)f-arrival based adaptive beamforming algorithm for orthogonal frequency-division multiple-access smart antenna systems is proposed. The proposed algorithm provides a high performance by steering main beams to the directions of a desired signal, whereas steering nulls to the directions of the interference, using the estimated directions. The beamforming outputs obtained by steering the main beams to the distinct directions of resolvable multipath signals are combined in a maximal ratio manner to exploit angular diversity gain. The performance elf the proposed algorithm is finally evaluated in cellular mobile environments to verify its efficiency and is compared with that of least-squares beamforming algorithm, by taking the WiBro system as a target system.