• Title/Summary/Keyword: small-scale school

Search Result 812, Processing Time 0.031 seconds

A Study on the Teachers' Perception on the Physical environment of Elementary School (초등학교 물리적 환경에 대한 교사의 인식 고찰)

  • Suk, Min-Chul;Rieu, Ho-Seoup
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.4
    • /
    • pp.21-30
    • /
    • 2014
  • In general, teachers' perceptions on the physical environment of elementary school are related on the quality of education and school life. But, we don't have study what teachers think of their enviroment of school. This study analyzed elementary school teachers' satisfaction with overall physical environment and their assessment of spaces with specific functions in order to understand teachers' perception of the physical environment of elementary schools. A survey questionnaire was administered to 982 homeroom teachers working at 67 elementary schools located in Seoul and Busan. Teachers' satisfaction with physical environment of school and their assessment were analyzed comparatively according to the teachers' personal attributes and school conditions. 1) Most of the surveyed teachers were satisfied with overall physical environment of the school, and assessed high the substantiality of functional spaces indoor and outdoor. By sub-factor, however, their satisfaction with work environment was lower than that with education and living environment. 2) The teachers perceived that the optimal number of classes was 30~36, and this is probably because they were relatively accustomed to large scale schools. 3) As might be expected, negative assessments were more frequent among teachers working at a large-scale school, an old school, or a school with small outdoor spaces. The results of this study show that, though partially different according to region, gender, teaching experience and school condition, teachers' satisfaction with school environment was relatively high. This suggests that elementary school teachers perceive their current school environment positively. Because they are accustomed to traditional education methods that have been maintained.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

A Study on Estimation of the Delivery Ratio by Flow Duration in a Small-Scale Test Bed for Managing TMDL in Nakdong River (낙동강수계 수질오염총량관리를 위한 시범소유역 유황별 유달율 산정방법 연구)

  • Shon, Tae-Seok;Park, Jae-Bum;Shin, Hyun-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.792-802
    • /
    • 2009
  • The objective of this study is to construct the watershed management system with link of the non-point sources model and to estimate delivery ratio duration curves for various pollutants. For the total water pollution load management system, non-point source model should be performed with the study of the characteristic about non-point sources and loadings of non-point source and the allotment of pollutant in each area. In this study, daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator and SWAT model. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. As a result, the SWAT simulation results show good agreements in terms of discharge, BOD, TN, TP but for more exact simulation should be kept studying about variables and parameters which are needed for simulation. And as a result of the characteristic discharges, pollutants loading with the runoff and delivery ratios, non-point sources effects were higher than point sources effects in the small-scale test bed of Nakdong river basin.

Evaluation and Fabrication of Composite Bipolar Plate to Develop a Light Weight Direct Methanol Fuel Cell Stack for Small-scale UAV Application (I) (무인항공기용 경량화 직접메탄올연료전지 스택 개발을 위한 복합소재 분리판 제작 및 성능 평가 (I))

  • Kang, Kyung-Mun;Park, Sung-Hyun;Kim, Jin-Soo;Ji, Hyun-Jin;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.134-142
    • /
    • 2012
  • A bipolar plate is a major component of a fuel cell stack, which occupies 50~60% of the total weight and over 50% of the total cost of a typical fuel cell stack. In this study, a composite bipolar plate is designed and fabricated to develop a compact and light-weight direct methanol fuel cell (DMFC) stack for a small-scale Unmanned Aerial Vehicle (UAV) application. The composite bipolar plates for DMFCs are prepared by a compression molding method using resole type phenol resin as a binder and natural graphite and carbon black as a conductor filler and tested in terms of electrical conductivity, mechanical strength and hydrogen permeability. The flexural strength of 63 MPa and the in-plane electrical conductivities of 191 S $cm^{-1}$ are achieved under the optimum bipolar plate composition of phenol : 18%; natural graphite : 82%; carbon black : 3%, indicating that the composite bipolar plates exhibit sufficient mechanical strength, electrical conductivity and hydrogen permeability to be applied in a DMFC stack. A DMFC with the composite bipolar plate is tested and shows a similar cell performance with a conventional DMFC with graphite-based bipolar plate.

On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modeling

  • Liu, Yang;Wang, Xiaofeng;Liu Li;Wu, Bin;Yang, Qin
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.47-61
    • /
    • 2022
  • The present research investigates the dynamic behavior of a rotating functionally graded (FG) nonlocal cylindrical beam. The cylindrical beam is mathematically modeled via third-order beam theory linked with nonlocal strain gradient theory. The tube structure is made of functionally graded materials composed of Aluminum oxide coated on the Nickel, which the mechanical properties vary in the tube radius direction according to the power law. The bending harmonic force is applied in the tube length middle. The nonlocal spinning equations of the tube are derived via the energy method of the Hamilton principle, and they are solved via a robust numerical procedure for different boundary conditions. The main application of the rotating nanostructures is for the production of small-scale motors and devices and the drug-delivery application, the presented results can help the researcher have a better view regarding the different conditions.

A Study on the Hydrodynamic Performance of High-Speed Vessel with Trim Tab Using Full-Scale CFD Simulation (실선 스케일 CFD 해석 기반 트림 탭이 부착된 고속선의 유체동역학적 성능 분석)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.656-665
    • /
    • 2021
  • In this study, trim tabs were attached to end of stern hull of a small high-speed vessel of length approximately 10 m and Froude number 1.0 to improve resistance performance and passenger comfort. Before computational fluid dynamics (CFD) simulations to assess the performance according to various geometries of the trim tab, the scale effect had been found through a previous study, so full-scale simulations were performed. The trim tab chord length was set to 0.5 %, 1.0 % and 1.5 % of LPP, and its angle to base line was varied in intervals of 5°. It decreased trim by stern and flotation: the greater the angle and length, the greater was the effect. Then it had pressure resistance decreased and shear resistance increased, and reduction ratio of total resistance varied accordingly. The results of this study indicated that the resistance performance was improved about 27 % at optimal running attitude that was the trim by stern about 1.5°.

Analysis of Experiments for the Rules of Material Change Unit in 9th Grade Science Textbooks and the Development of Experiments Applying Small-Scale Chemistry (9학년 과학교과서 물질변화에서의 규칙성 단원 실험 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Ryu, Ran-Yeong;Kim, Dong-Jin;Hwang, Hyun-Sook;Park, Se-Yeol;Lee, Sang-Kwon;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.529-540
    • /
    • 2011
  • The purpose of this study was to analyze experiments for the rules of material change unit in 9th grade science textbooks and develop experiments applying small-scale chemistry (SSC). For this study, experimental methods for the precipitation experiment, water electrolysis experiment, decomposition of hydrogen peroxide experiment presented in the 9 science textbooks were analyzed. Problems and improvements that were needed were extracted by 13 science teachers performing the experiments. Experiments applying SSC were developed based on the improvements needed. Afterwards, 19 pre-service science teachers performed both the developed SSC experiments and the science textbooks' experiments. A questionnaire about merits and demerits of the experiments applying SSC was performed. According to the results of this study, most of the 9th grade science textbooks included the lead iodide precipitation experiment, water electrolysis experiment by Hoffman voltameter, and decomposition of hydrogen peroxide experiment using catalytic manganese dioxide. Improvements were needed on the quantity of reagents, time for performing experiments, and scale of experimental apparatus. Merits of the developed experiments applying SSC which used small amount of reagents were safety, easy waste material disposal, short reaction time, and reproducible experimental results. Demerits of the experiments applying SSC were difficulty in observing, decreased achievement, and lack of skill in handling small-scale apparatus. Therefore, if the experiments developed applying SSC were to be utilized in 9th grade science experiments, it will be possible to use less reagent and be able to teach and carry out reproducible experiments at the same time. Also, the reproducible experiments based on SSC will help students under stand the scientific concepts for the rules of material change unit.

True Posterior Communicating Artery Aneurysms with High Risk of Rupture despite Very Small Diameter

  • Shin, Dong Gyu;Park, Jaechan;Kim, Myungsoo;Kim, Byoung-Joon;Shin, Im Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.215-223
    • /
    • 2022
  • Objective : This retrospective study investigated the clinical and angiographic characteristics of ruptured true posterior communicating artery (PCoA) aneurysms in comparison with junctional PCoA aneurysms presenting with a subarachnoid hemorrhage. Methods : The medical records and radiological data of 93 consecutive patients who underwent three-dimensional rotational angiography and surgical or endovascular treatment for a ruptured junctional or true PCoA aneurysm over an 8-year period were examined. Results : The maximum diameter of the ruptured true PCoA aneurysm (n=13, 14.0%) was significantly smaller than that of the ruptured junctional PCoA aneurysms (n=80, 4.45±1.44 vs. 7.68±3.36 mm, p=0.001). In particular, the incidence of very small aneurysms <4 mm was 46.2% (six of 13 patients) in the ruptured true PCoA aneurysm group, yet only 2.5% (two of 80 patients) in the ruptured junctional PCoA aneurysm group. Meanwhile, the diameter of the PCoA was significantly larger in the true PCoA aneurysm group than that in the junctional PCoA aneurysm group (1.90±0.57 vs. 1.15±0.49 mm, p<0.001). In addition, the ipsilateral PCoA/P1 ratio was significantly larger in the true PCoA aneurysm group than that in the group of a junctional PCoA aneurysm (mean PCoA/P1 ratio±standard deviation, 2.67±1.22 vs. 1.14±0.88; p<0.001). No between-group difference was identified for the modified Fisher grade, clinical grade at admission, and 3-month modified Rankin Scale score. Conclusion : A true PCoA aneurysm was found to be associated with a larger PCoA and ruptured at a smaller diameter than a junctional PCoA aneurysm. In particular, the incidence of a ruptured aneurysm with a very small diameter <4 mm was significantly higher among the patients with a true PCoA aneurysm.

Logistical Simulation for On-site Concrete Waste Management in Decommissioning

  • Lee, Eui-Taek;Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.389-403
    • /
    • 2019
  • Large amounts of concrete waste are likely to arise from the decommissioning of a Kori-1 nuclear power plant. Several studies have been conducted on decommissioning concrete waste in recent decades, however, they have been limited to contaminated concrete issues or were small pilot-scale experiments. This study constructed two industrial-scale models of on-site concrete waste management for clean as well as contaminated concrete. To evaluate the performance of both the models, simulations were conducted using the Flexsim software. The concrete particle size distribution of Kori-1 and concrete processor properties based on widely used construction equipment were used as sources of input data for the simulations. It was observed that it may take over two years to complete the on-site concrete management processes owing to the performance of existing processors. In addition, it was demonstrated that it is essential to identify bottlenecks in the system and enhance the performance of the relevant processors to avoid delays of the decommissioning schedule. Our results suggest that this novel approach can contribute to developing schedules or expediting delayed activities in the Kori-1 decommissioning project.