• Title/Summary/Keyword: small wind turbine (SWT)

Search Result 2, Processing Time 0.016 seconds

Aero-elastic coupled numerical analysis of small wind turbine-generator modelling

  • Bukala, Jakub;Damaziak, Krzysztof;Karimi, Hamid Reza;Malachowski, Jerzy
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.577-594
    • /
    • 2016
  • In this paper a practical modelling methodology is presented for a series of aero- servo- elastic- coupled numerical analyses of small wind turbine operation, with particular emphasis on variable speed generator modelling in various wind speed conditions. The following characteristics are determined using the available computer tools: the tip speed ratio as a function of the generator constant (under the assumption of constant wind speed), the turbine coefficient of power as a function of the tip speed ratio (the torque curve is modified accordingly and generator speed and power curves are plotted), turbine power curves and coefficient of power curve as functions of the incoming wind speed. The last stage is to determine forces and torques acting on rotor blades and turbine tower for specific incoming wind speeds in order to examine the impact of the stall phenomena on these values (beyond the rated power of the turbine). It is shown that the obtained results demonstrate a valuable guideline for small wind turbines design process.

A Magnetic Brake for Small Wind Turbines

  • Jee, I.H.;Nahm, S.Y.;Kang, S.J.;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.33-35
    • /
    • 2012
  • A magnetic brake system was fabricated for use with small wind turbines. The torque of the pivot did not change as the speed of revolution increased when the magnetic array disc was far from the salient of the aluminum housing, the torque abruptly increased as the magnetic array approached the salient of the aluminum housing. The torque increased as a quadratic function of the speed of revolution when the distance between the magnetic array and the datum point was 60 mm.