• Title/Summary/Keyword: small wind turbine

Search Result 258, Processing Time 0.022 seconds

Development of the Furling Control Type Small Wind Turbine System (과풍속 출력 제한형 소형 풍력 발전장치 개발)

  • Choi, Young-Chul;Kim, Chul-Ho;Lee, Hyun-Chae;Seo, Young-Taek;Han, Young-Oun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.693-701
    • /
    • 2012
  • In this study, a small wind turbine airfoil specialized for national wind condition was designed in order to develop the furling control type HAWT. And then a flow analysis was carried out based on the blade drawing which was designed to characterize of the developed airfoil. The result of the flow analysis showed that the torque on the 3 blades was 180.23N.m. This is equivalent to an output power of 5.66kw and an output efficiency of 0.44. Then we produced and constructed a 3kW - furling control type HAWT by getting the system unit design technology such as the specialized furling control device. By operating this turbine, we could get 3kW of the rated power at a wind speed of 10.5m/s through the ability test. Cut-in wind speed was 2m/s, generator efficiency was 92% at the rated power output. Sound power level was 87.2dB(A). Also we observed that the output power was limited to 10.5m/s with furling system operation.

Aerodynamic Retrofit of Bridge and Energy Harvesting by Small Wind Turbines (소형 풍력발전기를 이용한 교량의 공력성능 개선 및 에너지 생산)

  • Kwon, Soon-Duck;Lee, Seongho;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.27-33
    • /
    • 2010
  • This study addresses a methodology to use small wind turbines for dual purposes, improving aerodynamic performance of flexible bridges and wind energy harvesting. A way to proper placement of small wind turbines on flexible bridges were proposed according on the analogy of conventional aerodynamic appendages. From the wind tunnel tests, it was found that the wind turbine attached like fairing was effective to reduce the vortex-induced vibration of bridge and the optimal spanwise interval of the wind turbine was 3-4.5 time of turbine diameter. Moreover the aerodynamic coefficients of the bridge were improved after installation of the wind turbines. Present results showed the general availability of wind turbine for improvement of aerodynamic performance and energy supply of flexible bridges although the capacity of wind power generation was strongly dependent on wind characteristics of the bridge site.

Design of CRIO-based real-time controller for small-sized wind turbine generating system and comparative study on performance of various MPPT algorithms (소형 풍력발전 시스템을 위한 CRIO 기반의 실시간 제어 시스템 설계 및 다양한 형태의 MPPT 알고리즘 성능 비교 분석)

  • Kim, Su-Jin;Kim, Byung-Moon;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • The small-sized wind turbine generating system with the output power less than 10kW, which can be installed in some areas of hills, parks, and cities due to its flexibility, is one of the progressive research and development fields in renewable energy. It is important for the small wind turbine generators to have low cost, high reliability as well as high efficiency. To meet these requirements, development of various maximum-power-point-tracking (MPPT) control schemes should be required. Generally, the output of the controller can be connected to a 48V battery to supply power to a DC load. In this work, the design and implementation of an FPGA-based MPPT controller for small-sized wind turbine generating system is presented. For the verification of the practical performance of various MPPT algorithms, CRIO controller from NI has been used.

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Development of Inverter fault diagnostic algorithm based on CT for small-sized wind turbine system (CT기반의 소형 풍력발전 시스템 인버터 고장진단 알고리즘 개발)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • In recent years, wind turbine system has been considered as the most efficient renewable energy source. Wind turbine system is a complex system which is composed of blade, generator and inverter systems. Recently, lots of researches on fault detection and diagnosis of wind turbine system have been done. Most of them are related with the fault diagnosis of mechanical elements using bivration signal. In this work, a new type of inverter fault detection and diagnstic algorithm is proposed. Furthermore, extensive simulation studies and practical experiments are carried out to verify the proposed algorithm.

A Study on Design and Test for Composite Blade of Small Scale Wind Turbine System (소형 풍력발전 시스템용 복합재 블레이드의 설계 및 시험에 관한 연구)

  • Kong Changduk;Bang Johyug;Park Jongha;Oh Kyungwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.125-130
    • /
    • 2004
  • This study proposes a development for the l-kW class small wind turbine system, which is applicable to relatively low wind speed region like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and aerodynamic performance were verified through the prototype test.

  • PDF

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

Evaluation of Energy Production for a Small Wind Turbine by Considering the Geometric Shape of the Deokjeok-Do Island (덕적도 지형을 고려한 소형풍력발전기 발전량 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.629-635
    • /
    • 2014
  • This paper presents annual energy production (AEP) by a 1.5kW wind turbine due to be installed in Deokjeok-Do island. Local wind data is determined by geometric shape of Deokjeok-Do island and annual wind data from Korea Institute of Energy Research at three places considered to be installed the wind turbine. Numerical simulation using WindSim is performed to obtain flow pattern for the whole island. The length of each computation grid is 40 m, and k-e turbulence model is imposed. AEP is determined by the power curve of the wind turbine and the local wind data obtained from numerical simulation. To capture the more detailed flow pattern at the specific local region, Urumsil-maul inside the island, fine mesh having the grid length of 10m is evaluated. It is noted that the input data for numerical simulation to the local region is used the wind data obtained by the numerical results for the whole island. From the numerical analysis, it is found that a local AEP at the Urumsil-maul has almost same value of 1.72 MWh regardless the grid resolutions used in the present calculation. It is noted that relatively fine mesh used for local region is effective to understand the flow pattern clearly.

Effect of Blockage Ratio on Wind Tunnel Testing of Small Vertical-Axis Wind Turbines (소형 수직축 풍력발전기 풍동실험시 폐쇄율의 영향)

  • Jeong, Houi-Gab;Lee, Seung-Ho;Kwon, Soon-Duck
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of blockage ratio on wind tunnel testing of small vertical-axis wind turbine has been investigated in this study. Height and rotor diameter of the three blades Darrieus vertical axis wind turbine used in present test were 0.4m and 0.35m respectively. We measured the wind speeds and power coefficient at three different wind tunnels where blockage ratio were 3.5%, 13.4% and 24.7% respectively. The test results show that the measured powers have been strongly influenced by blockage ratio, generally increased as the blockage ratio increases. The maximum power at higher blockage ratio has been obtained at relatively high tip speed ratio compared with that at low blockage ratio. The measured power coefficients under high blockage ratio can be improved from proper correction using the simple correction equation based on blockage factor. In present study, the correction error for power coefficient can be less than 5%, however correction effectiveness reveals relatively poor at high blockage ratio and low wind speed.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.