• 제목/요약/키워드: small wind turbine

검색결과 258건 처리시간 0.025초

이중계자를 갖는 10 MW급 전초전도 동기 발전기의 교류손실 해석 (AC Loss Analysis of 10 MW Class Fully High Temperature Superconducting Synchronous Generators with Dual Field Windings)

  • 박상호;이명희;이세연;양형석;김우석;이지광;최경달
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.467-472
    • /
    • 2020
  • The superconducting synchronous generator is one of the breakthrough elements for direct-drive wind turbines because it is light and small. Normally the superconducting one has copper armature windings in the stator and superconducting field windings on the rotor. The high resistance of the armature can make large copper losses, comparing with the conventional generators with a gear box. One of the solutions for the large copper losses could be a fully superconducting generator. But the high magnetic fields from the superconducting field windings on the rotor also make high perpendicular magnetic fields on the superconducting tapes in the armature windings. We have proposed a fully superconducting synchronous generator with dual field windings. It could immensely decrease the circumferential component of the magnetic field from the field windings at the armature windings. In this paper, we conceptually designed 3 types of superconducting synchronous generators. The first one is the fully superconducting one with conventional structure, which has superconducting armature windings in the stator and superconducting field windings on the rotor. The second one is the one with dual superconducting field windings and superconducting armature windings between them. The last one is the same as the third one except the structure of the armature. If the concentrated armature windings are superconducting ones with cryostats, then they cannot be installed within the span of 2 poles. So, we adopted 3 phases windings within 4 poles system. It makes more AC losses but can be manufactured really.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

비틂전단시험에 의한 서해안 새만금 모래의 동적특성 연구 (Study of Dynamic Characteristics of West Coast Saemangeum Sand by Torsional Shear Test)

  • 전홍우;손수원;김진만
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.73-80
    • /
    • 2013
  • The dynamic characteristics of west coast sand were investigated in order to evaluate the design properties of the offshore wind turbine foundations to be constructed in the West Sea. Torsional shear tests were performed at different confining pressures and densities on specimens constituted by the dry fluviation method. The strain-dependent shear modulus and damping curves were obtained, together with modulus degradation curves. The results show that the confining pressure is more influential on the dynamic characteristics of the sand than the density. It was also found that the dynamic curves from this study were similar to those proposed by others. The modulus degradation ratio $G/G_{1st}$ varies slightly at a small strain level, but increases significantly once beyond the intermediate strain level.

마이크로그리드용 50kW급 PMSG 설계에 관한 연구 (A Study on Design of 50kW PMSG for Micro-grid Application)

  • 정문선;문채주;김형길;장영학;박태식
    • 한국전자통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.527-536
    • /
    • 2014
  • 본 논문에서는 마이크로그리드 적용을 위한 50kW 풍력발전기를 설계하였으며, 발전기의 해석은 maxwell 2D 상용프로그램을 사용하였다. 특히 제안된 PMSG는 코깅토크를 줄이고자 offset과 skew를 적용하였다. 최적의 옵셋과 스큐는 2mm와 전기각 60도를 제안하였다. 부하운전시 모의결과는 평균 고조파 1.3%, 전압 322.41V, 전류 94.95A, 철손 9.73W, 와류손 73.68W, 동손 3.52kW로 나타났다. 계산된 발전기 용량은 61.56kW이며, 제안된 설계절차는 더 큰 용량의 발전기설계에 적용할 수 있다.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구 (Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell)

  • 권영진;김동연;배중면
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

독립형 마이크로그리드 내 분산전원별 최적용량 결정 방법 (Determining the Optimal Capacities of Distributed Generators Installed in A Stand-alone Microgrid Power System)

  • 고은영;백자현;강태혁;한동화;조수환
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.239-246
    • /
    • 2016
  • In recent years, the power demand has been increasing steadily and the occurrence of maximum power demand has been moving from the summer season to the winter season in Korea. And since the control of electric power supply and demand is more important under those situations, a micro-grid system began to emerge as a keyword for the sTable operation of electric power system. A micro-gird power system is composed of various kinds of distributed generators(DG) such as small diesel generator, wind turbine, photo-voltaic generator and energy storage system(ESS). This paper introduces a method to determine the optimal capacities of the distributed generators which are installed in a stand-alone type of microgrid power system based on the fundamental proportion of diesel generator. At first, the fundamental proportion of diesel generator will be determined by changing from 0 to 50 percent. And then we will optimize the capacities of renewable energy resources and ESS according to load patterns. Lastly, after recalculating the capacity of ESS with consideration for SOC constraints, the optimal capacities of distributed generators will be decided.

트라이포드 하부구조물의 기저모델개선 및 결함추정 기법 (Baseline Model Updating and Damage Estimation Techniques for Tripod Substructure)

  • 이종원
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.218-226
    • /
    • 2020
  • 해상풍력터빈 하부구조물은 중요한 기능의 수행, 접근성의 제약 등으로 인하여 건전성 모니터링을 통한 효과적 유지관리가 필요하다. 본 연구에서는 해상풍력터빈 트라이포드 하부구조물의 건전성 모니터링을 위한 기저모델개선 및 결함추정 기법을 실험적으로 연구한다. 우선 하부구조물 건전성 모니터링을 위한 절차를 제안한 후 이 과정을 트라이포드 하부구조물 축소모형에 대하여 적용한다. 즉, 축소모형에 대한 초기 기저모델을 수치적으로 수립한 후 모드특성을 추정하고, 건전상태 진동실험 결과로부터 구한 고유주파수와 모드형상을 기준으로 기저모델을 개선하는데, 이때 구조물의 경계조건을 고려하고 신경망기법을 이용한다. 이후, 개선된 기저모델을 이용하여 신경망의 훈련패턴을 생성하고, 손상상태 진동실험 결과로부터 구한 모드특성을 훈련된 신경망에 입력함으로써 결함을 추정한다. 유효고정부 모델을 이용하여, 건전상태에서 측정된 모드특성에 맞추어 합리적으로 기저모델을 수립할 수 있었다. 또한, 축소모형에 대한 손상실험을 수행하였는데, 4가지 손상경우에 대하여 손상을 추정한 결과, 합리적으로 손상위치를 추정할 수 있었으며, 실제 손상정도가 심해질수록 손상정도 추정치도 증가하였다. 그러나 손상정도가 상대적으로 미소한 경우, 해당 손상위치가 판정은 되지만 다른 위치와 비교하여 확실한 손상위치의 식별이 어려웠다. 향후, 이러한 미소손상 추정 및 손상정도 추정치의 강성감소에 대한 정량화 등에 대한 후속연구가 수반된다면, 해상풍력터빈 트라이포드 하부구조물의 건전성 모니터링에 제안 기법을 효과적으로 활용할 수 있을 것으로 판단된다.