• Title/Summary/Keyword: small wind turbine

Search Result 260, Processing Time 0.022 seconds

Wind load estimation of a 10 MW floating offshore wind turbine during transportation and installation by wind tunnel tests (풍동시험을 활용한 10 MW급 부유식 해상풍력터빈 운송 및 설치 시 풍하중 예측)

  • In-Hwan Sim
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • As the generation capacity of floating offshore wind turbines increases, the wind load applied to each turbine increases. Due to such a high wind load, the capacity of transport equipment (such as tugboats or cranes) required in the transportation and installation phases must be much larger than that of previous small-capacity wind power generation systems. However, for such an important wind load prediction method, the simple formula proposed by the classification society is generally used, and prediction through wind tunnel tests or Computational Fluid Dynamics (CFD) is rarely used, especially for a concept or initial design stages. In this study, the wind load of a 10 MW class floating offshore wind turbine was predicted by a simplified formula and compared with results of wind tunnel tests. In addition, the wind load coefficients at each stage of fabrication, transportation, and installation are presented so that it can be used during a concept or initial design stages for similar floating offshore wind turbines.

Vibration Monitoring and Power Performance Evaluation of a Small Stand-alone Wind Turbine Generator (소형 독립형 풍력발전기의 진동 모니터링 및 출력 성능 평가)

  • Yoo, N.S.;Kim, Yoon-Ho;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.114-120
    • /
    • 2007
  • Vibration performance of a 6 kW stand-alone wind turbine(W/T) generator is investigated under the wind environment of Daegwanryung mountain area. In the W/T, wind condition, power performance and structural stability are correlated each other An integrated monitoring system which consists of accelerometers, anemometers, power meters and auxiliary sensors for atmospheric data are constructed to measure the required data simultaneously. Based upon the data acquired over a long period of time, vibration performance of the W/T structure is estimated with annual wind data and generating power performance. Within the operating speed range, possibility of severe nitration is diagnosed. Vibration sources are identified and countermeasures are proposed. The goal of the study is to offer the basic information on W/T vibration performance at the design stage of a small stand alone W/T structure.

Design of Neural Network based MPPT(Maximum Power Point Tracking) Algorithm for Efficient Energy Management in Urban Wind Turbine Generating System (도시형 풍력발전 시스템의 효율적 에너지 관리를 위한 인공신경망 기반 최대 전력점 추종 알고리즘 개발)

  • Kim, Seung-Young;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.766-772
    • /
    • 2009
  • Generally, wind industry has been oriented to large power systems which require large windy areas and often need to overcome environment restrictions. However, small-scale wind turbines are closer to the consumers and have a large market potential, and much more efforts are required to become economically attractive. In this paper, a prototype of a small-scale urban wind generation system for battery charging application is described and a neural network based MPPT(Maximum Power Point Tracking) algorithm which can be effectively applied to urban wind turbine system is proposed. Through Matlab based simulation studies and actual implementation of the proposed algorithm, the feasibility of the proposed scheme is verified.

Development of an aerodynamic design program for a small wind turbine blade (소형풍력발전기용 블레이드 공력설계 프로그램 개발)

  • Yoon, Jin-Yong;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.

Development of an Analysis Program for Small Horizontal Wind Turbines Considering Side Furling and Optimal Torque Scheduling (사이드 펄링과 최적 토크스케줄을 고려한 소형 풍력터빈 해석 프로그램 개발)

  • Jang, Hyeon-Mu;Kim, Dong-Myeong;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.15-31
    • /
    • 2018
  • A program to design a small capacity wind turbine blade is proposed in this study. The program is based on a matlab GUI environment and designed to perform blade design based on the blade element momentum theory. The program is different from other simulation tools available in a point that it can analyze the side-furling power regulation mechanism and also has an algorithm to find out optimal torque schedule above the rated wind speed region. The side-furling power regulation is used for small-capacity horizontal axis wind turbines because they cannot use active pitch control due to high cost which is commonly used for large-capacity wind turbine. Also, the torque schedule above the rated wind speed region should be different from that of the large capacity wind turbines because active pitching is not used. The program developed in this study was validated with the results with FAST which is the only program that can analyze the performance of side-furled wind turbines. For the validation a commercial 10 kW wind turbine data which is available in the literature was used. From the validation, it was found that the performance prediction from the proposed simple program is close to those from FAST. It was also found that the optimal torque scheduling from the proposed program was found to increase the turbine power substantially. Further experimental validation will be performed as a future work.

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.

Parametric Study of a Wind Turbine Tower Vibration System Supported by Guy Cables (케이블 지지된 풍력발전기 타워 진동계의 변수 분석)

  • Park, Mu-Yeol;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1165-1169
    • /
    • 2006
  • Vibration characteristics of a small stand alone W/T(wind turbine) system are experimentally and theoretically investigated. Vibration resonance of the tower-cable system is monitored and the data are analysed with the analytical results. To predict the resonance speed of the cable supported WIT. Rayleigh-Ritz method is applied to the tower-guy cable coupled system. Parametric study on the relation of the cable tension. cable elasticity and resonance frequency is carried out. Results of the study are utilized to design the stable structure of small size wind turbines which consist of a pivoted tower and guy cables.

  • PDF

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

CFD study of an airfoil for small wind turbine applications

  • Wata, Joji;Zullah, Mohammed Asid;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • Small horizontal axis wind turbines (HAWTs) can be used to produce power in areas where the wind conditions are not favorable or optimal for large HAWTs. A newly designed airfoil for use in small HAWTs was analyzed in CFD to predict the aerodynamic performance at various Reynolds numbers over a various angles of attack. The coefficient of lift and drag, CL and CD, and the pressure distribution over the airfoil was obtained. It was found that the airfoil could achieve very good aerodynamic characteristics. The results of the numerical analysis will be compared against experimental data for validation purposes.

  • PDF

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.