• Title/Summary/Keyword: small wind power

Search Result 331, Processing Time 0.03 seconds

A Proposal of the Prediction Method of Decentralized Power on Climatic Change (기후 변화에 따른 분산 전력 예측 방법 제안)

  • Kim, Jeong-Young;Kim, Bo-Min;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.942-945
    • /
    • 2010
  • The development of decentralized power has appeared as part of an effort to decrease the energy loss and the cost for electric power facilities through installing small renewable energy generation systems including solar and wind power generation. Recently a new era for decentralized power environment in building is coming in order to handle the climatic and environmental change occurred all over the world. Especially solar and wind power generation systems can be easily set up and are also economically feasible, and thus many industrial companies enter into this business. This paper suggests the overall architecture for the decentralized renewable power system and the prediction method of power on climatic change. The ultimate goal is to help manage the overall power efficiently and thus provide the technological basis for achieving zero-energy house.

  • PDF

Development of Fractional Slot Axial Flux Permanent Magnet Synchronous Generator with Low Cogging Torque and Reduced Voltage Regulation (분수슬롯을 가지는 축방향 자속형 영구자석 동기전동기의 코깅토크 및 전압리플 저감에 관한 연구)

  • Choi, Da-Woon;Li, Jian;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1111-1112
    • /
    • 2011
  • This paper investigated application of fractional-slot concentrated-winding axial flux permanent magnet machines for wind turbines. Design criteria of cogging torque and voltage regulation was firstly proposed for this kind of application. Fractional winding has small cogging torque which is highlight for wind turbines, but slot leakage inductance would increase voltage regulation, which is an important performance index of generators. By varying slot opening, cogging torque and slot leakage inductance could be adjusted. In this paper, cogging torque and inductances were calculated by both analytical and finite element methods. Voltage regulation was studied by two-axis model under unity-power-factor load and verified by transient finite element analysis.

  • PDF

Analysis of Economic Feasibility of New & Renewable Energies ($\cdot$재생에너지 원별 경제성 분석 - 태양광, 풍력, 소수력 발전을 중심으로 -)

  • Kim Zin-Oh;Kim Jung-Wan;Boo Kyung-Jin
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.79-86
    • /
    • 2005
  • This study conducted an analysis of economic feasibility with unit generating costs calculated based on scenarios of capacity factors, discount rates, government supporting rates, installation costs. However, It Is clear that few new and renewable energies can meet the tariffs [government purchasing prices] set by the government in light of the current market reality. Without the government support, solar PV is not economically feasible at the tariff of \716.40/kWh. in the case of wind Power, the current tariff of \107.66/kWh is not enough to make it competitive except for a mid- and large-scale wind farm The analysis showed that even small hydro is not economically acceptable at the current tariff of \73.69/kWh.

  • PDF

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.

Characteristic of holding power due to nature of seabed at anchor (묘박중 해저 저질에 따른 파주력 특성)

  • KIM, Byung-Yeob;KIM, Kwang-il;KIM, Min-son;NOBUO, Kimura;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.230-240
    • /
    • 2022
  • In general, a high tension on the anchor and chain is placed when a ship at anchor is subjected to heavy weather. Mariners have to pay attention to whether dragging anchor occurs to keep the safety of the ship at anchorage since it is difficult to maintain the stable motion of ship and it causes collisions with other ships nearby. In this paper, the ship motion against the external forces was shown to obtain the fundamental data about characteristic of holding power due to nature of seabed at anchor, so practical trials were carried out in rocky area and muddy area using a trial ship around coastal area of South Korea. In muddy seabed, holding power showed reasonable tension values depending on the distance from anchor position of continuing swing motions of a ship corresponding to wind force. Meanwhile in rocky seabed, tension values on the chain appeared very high occasionally regardless of the distance from the anchor position and seemed to exceed its holding power to be the breaking strain of the chain although weather was not in a severe condition. Therefore, some of the cables laid on the seabed were presumed to be caught in a crack on the rock. It is assumed that even a small amount of external force may cause the chain to break in a moment in rocky seabed. Additionally, wind and current forces had a somewhat contradictory effect on holding power of the ship between them.

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.

Reduced-mass Adaptive TMD for Tall Buildings Damping

  • Weber, Felix;Huber, Peter;Spensberger, Simon;Distl, Johann;Braun, Christian
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Tall buildings are prone to wind-induced vibrations due to their slenderness whereby peak structural accelerations may be higher than the recommended maximum value. The common countermeasure is the installation of a tuned mass damper (TMD) near the highest occupied floor. Due to the extremely large modal mass of tall buildings and because of the narrow to broad band type of wind excitation the TMD mass may become inacceptable large - in extreme cases up to 2000 metric tons. It is therefore a need to develop more efficient TMD concepts which provide the same damping to the building but with reduced mass. The adaptive TMD concept described in this paper represents a solution to this problem. Frequency and damping of the adaptive TMD are controlled in real-time by semi-active oil dampers according to the actual structural acceleration. The resulting enhanced TMD efficiency allows reducing its mass by up to 20% compared to the classical passive TMD. The adaptive TMD system is fully fail-safe thanks to a smart valve system of the semi-active oil dampers. In contrast to active TMD solutions the adaptive TMD is unconditionally stable and its power consumption on the order of 1 kW is negligible small as controllable oil dampers are semi-active devices. The adaptive TMD with reduced mass, stable behavior and lowest power consumption is therefore a preferable and cost saving damping tool for tall buildings.

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition

  • Tse, K.T.;Chen, Zeng-Shun;Lee, Dong-Eun;Kim, Bubryur
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.227-238
    • /
    • 2021
  • This study analyzed the pressure patterns and local pressure of tall buildings with corner modifications (recessed and chamfered corner) using wind tunnel tests and proper orthogonal decomposition (POD). POD can distinguish pressure patterns by POD mode and more dominant pressure patterns can be found according to the order of POD modes. Results show that both recessed and chamfered corners effectively reduced wind-induced responses. Additionally, unique effects were observed depending on the ratio of corner modification. Tall building models with recessed corners showed fluctuations in the approaching wind flow in the first POD mode and vortex shedding effects in the second POD mode. With large corner modification, energy distribution became small in the first POD mode, which shows that the effect of the first POD mode reduced. Among building models with chamfered corners, vortex shedding effects appeared in the first POD mode, except for the model with the highest ratio of corner modifications. The POD confirmed that both recessed and chamfered corners play a role in reducing vortex shedding effects, and the normalized power spectral density peak value of modes showing vortex shedding was smaller than that of the building model with a square section. Vortex shedding effects were observed on the front corner surfaces resulting from corner modification, as with the side surface. For buildings with recessed corners, the local pressure on corner surfaces was larger than that of side surfaces. Moreover, the average wind pressure was effectively reduced to 88.42% and 92.40% in RE1 on the windward surface and CH1 on the side surface, respectively.

Variable Step Size Maximum Power Point Tracking Control based on Fuzzy Logic for a Small Wind Power System (소형풍력발전시스템을 위한 퍼지로직 기반의 듀티비 변화량 가변 MPPT 제어)

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.263-264
    • /
    • 2011
  • 본 논문은 풍력발전시스템의 MPPT 제어 시 정상상태에서의 안정성 향상을 위하여 퍼지로직 기반의 듀티비 변화량 가변 MPPT 방법을 제안한다. 일정한 듀티비 변화량으로 MPPT 제어 시 추종시간이 느려지거나 최대출력 점에서 진동하는 단점이 있다. 출력 전류량에 따라 구성된 퍼지로직 기반으로 듀티비 변화량을 가변 하여 MPPT 제어 시 정상상태 특성과 시스템 응답특성을 향상 시킬 수 있다. 3kW급 계통연계형 풍력발전시스템을 기반으로 수행된 시뮬레이션 결과를 바탕으로 제안한 알고리즘의 타당성을 검증하였다.

  • PDF