• 제목/요약/키워드: small signal stability

검색결과 196건 처리시간 0.189초

태양광 하드웨어 시뮬레이터의 소신호 안정도 분석 (Small-Signal Stability Analysis of Solar Array Hardware Simulators)

  • 투시타 란디마 웰라와타;최성진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.200-201
    • /
    • 2019
  • Due to uncontrollability and non-repeatability of natural irradiation and temperature, the solar array simulator (SAS) is required to conduct the MPPT power processing experiments precisely. However, the nonlinearity of PV curve characteristic is a crucial task for the control of SAS. In the literature, this issue is addressed by many authors and various methods are proposed. However, stability analysis of SAS is not enough to evaluate the control performance. In this paper, the limitations of conventional SAS are studied according to the small signal model. By using the proposed approach, the performance of two different control method for SAS system are analyzed and compared.

  • PDF

다기계통의 미소신호안정도해석시 부하특성의 영향 (Effect of Load Characteristics in Small-Signal Stability Analysis in Multimachine Power Systems)

  • 권세혁;노규민;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.189-191
    • /
    • 1993
  • A systematic procedure for the elements of system matrix in multimachine systems with loads is suggested for the small-signal stability studies. Synchronous machines are represented by either a two-axis model or classical model. The interrelationship of submatrices of system matrix is investigated. Once elements of one submatrix are determined, they can be used to calculate the elements of the other submatrix. It is illustrated for three machine and nine bus multimachine systems with constant impedance loads, constant MVA load, constant current and power factors.

  • PDF

ZVS 위상천이 풀브릿지 컨버터의 디지털 샘플링 기법에 따른 소신호 모델 분석 (An Analysis of ZVS Phase-Shift Full-Bridge Converter's Small Signal Model according to Digital Sampling Method)

  • 김정우;조영훈;최규하
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.167-174
    • /
    • 2015
  • This study describes how digital time delay deteriorates control performance in zero voltage switching (ZVS) phase-shifted full bridge (PSFB) converter. The small-signal model of the ZVS PSFB converter is derived from the buck-converter small-signal model. Digital time delay effects have been considered according to the digital sampling methods. The analysis verifies that digital time delays reduce the stability margin of the converter, and the double sampling technique exhibits better performance than the single sampling technique. Both simulation and experimental results based on 250 W ZVS PSFB confirm the validity of the analyses performed in the study.

LLC 공진형 컨버터의 소신호 모델링 분석 및 실험적 검증 (Small Signal Modeling Analysis and Experimental Verification of LLC Resonant Converter)

  • 김진우;이태영;조영훈;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.365-366
    • /
    • 2017
  • LLC resonant DC-DC converter is widely used in many kinds of applications such as battery energy storage systems, wireless power transfer and high voltage power supply. It is because of characteristics like high efficiency, power density, isolation, wide power level and stability enhancement at high switching frequency. Small signal modeling helps to design controller of the converter by approximating the behavior of nonlinear system with linear state equations. This paper presents comparison between small signal modeling analysis and experimental results of LLC resonant converter.

  • PDF

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

제한된 제어 입력 신호의 보상을 위한 보상기 설계와 안정도에 대한 연구 (A Study on the Stability and Design of Compensator for Bounded Control Input Signal)

  • 손동설;엄기환;박장환
    • 한국통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.1413-1421
    • /
    • 1993
  • 제어대상에 제한된 제어 입력 신호에 대하여 좋지 않은 효과를 줄일 수 있고, 이것은 제어 입력 신호의 억제 되어진 부분을 보상하는 보상 루프를 구성함으로서 실행된다. 보상 루프의 보상기 설계와 안정도 조사는 Kalman-Szego-보조정리를 이용하고 그 결과로서 작은 오차신호에 대해서도 제어대상에 대한 제어 입력 신호의 많은 범위를 활용하는 것이 가능하다.

  • PDF

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

DESIGN OF DELAY-TOLERANT CONTROLLER FOR REMOTE CONTROL OF NUCLEAR REACTOR POWER

  • Lee, Yoon-Joon;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.71-78
    • /
    • 2009
  • One of main concepts involved in regional small nuclear reactors is unmanned remote control. Internet-based virtual private networks provide environments for the remote monitoring and control of geographically-dispersed systems, and with the advances in communication technologies, the potential of networks for real time control and automation becomes enormous. However, networked control has some problems. The most critical is delay in signal transmission, which degrades system stability and performance. Therefore, a networked control system should be designed to account for delay. This paper proposes some design approaches for a delay-tolerant system that can guarantee predetermined stability margins and performance. To accomplish this, the reactor plant is modeled with consideration of uncertainties. With this model, three kinds of controllers are developed using different methods. The designed systems are compared with respect to stability and performance, and a second-order controller designed using the table lookup method was found to give the most satisfactory results.

계통동요 제어를 위한 UPFC제어기 (UPFC Control for Power System Damping Reduction)

  • 윤종수;윤용범;문건우;윤석호;추진부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.256-258
    • /
    • 1998
  • This paper presents a control system design for the UPFC of FACTS devices by optimal control scheme to enhance small-signal stability in the Power system. The feature of this UPFC controller is coordinated with generator exciter controller(AVR, PSS) to improve the total Power system stability and performance.

  • PDF

온라인 전력계통 안정도 진단을 위한 선로 선정 방안 (Identification of Correlative Transmission Lines for On-Line Stability Diagnosis)

  • 조윤성;장길수;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.3-6
    • /
    • 2001
  • Power system stability is correlated with system structure, disturbances and operating conditions. and power flows in transmission lines are closely related with those conditions. This paper discusses a methodology to identify crucial transmission lines for stability diagnosis with respect to transient stability and small-signal stability. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a Procedure to make a priority list of monitored transmission lines using contingency analysis. The procedure is applied to the PSS/E test system. and it shows capabilities of the proposed method.

  • PDF