• Title/Summary/Keyword: small scale model

Search Result 1,207, Processing Time 0.026 seconds

Comparison of Powers in Goodness of Fit Test of Quadratic Measurement Error Model

  • Moon, Myung-Sang
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.229-240
    • /
    • 2002
  • Whether to use linear or quadratic model in the analysis of regression data is one of the important problems in classical regression model and measurement error model (MEM). In MEM, four goodness of fit test statistics are available In solving that problem. Two are from the derivation of estimators of quadratic MEM, and one is from that of the general $k^{th}$-order polynomial MEM. The fourth one is derived as a variation of goodness of fit test statistic used in linear MEM. The purpose of this paper is to find the most powerful test statistic among them through the small-scale simulation.

Direct strength measurement of Timoshenko-beam model: Vibration analysis of double walled carbon nanotubes

  • Ghandourah, Emad;Hussain, Muzamal;Thobiani, Faisal Al;Hefni, Mohammed;Alghamdi, Sami
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.77-83
    • /
    • 2022
  • In the last ten years, many researchers have studied the vibrations of carbon nanotubes using different beam theories. The nano- and micro-scale systems have wavy shape and there is a demand for a powerful tool to mathematically model waviness of those systems. In accordance with the above mentioned lack for the modeling of the waviness of the curved tiny structure, a novel approach is employed by implementing the Timoshenko-beam model. Owing to the small size of the micro beam, these structures are very appropriate for designing small instruments. The vibrations of double walled carbon nanotubes (DWCNTs) are developed using the Timoshenko-beam model in conjunction with the wave propagation approach under support conditions to calculate the fundamental frequencies of DWCNTs. The frequency influence is observed with different parameters. Vibrations of the double walled carbon nanotubes are investigated in order to find their vibrational modes with frequencies. The aspect ratios and half axial wave mode with small length are investigated. It is calculated that these frequencies and ratios are dependent upon the length scale and aspect ratio.

Fast Partial Shading Analysis of Large-scale Photovoltaic Arrays via Tearing Method

  • Zhang, Mao;Zhong, Sunan;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1489-1500
    • /
    • 2018
  • Partial shading analysis of large-scale photovoltaic (PV) arrays has recently become a theoretically and numerically challenging issue, and it is necessary for PV system designers. The main contributions of this study are the following: 1) A PSIM-based macro-model was employed because it is remarkably fast, has high precision, and has no convergence issues. 2) Three types of equivalent macro-models were developed for the transformation of a small PV sub-array with uniform irradiance to a new macro-model. 3) On the basis of the proposed new macro-model, a tearing method was established, which can divide a large-scale PV array into several small sub-arrays to significantly improve the efficiency improvement of a simulation. 4) Three platforms, namely, PSIM, PSpice, and MATLAB, were applied to evaluate the proposed tearing method. The proposed models and methods were validated, and the value of this research was highlighted using an actual large-scale PV array with 2420 PV modules. Numerical simulation demonstrated that the tearing method can remarkably improve the simulation efficiency by approximately thousands of times, and the method obtained a precision of nearly 6.5%. It can provide a useful tool to design the optimal configuration of a PV array with a given shading pattern as much as possible.

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

  • Zhang, Ling;Ouyang, Jie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.27-40
    • /
    • 2012
  • The two-dimensional incompressible flow of a linear viscoelastic fluid we considered in this research has rapidly oscillating initial conditions which contain both the large scale and small scale information. In order to grasp this double-scale phenomenon of the complex flow, a multiscale analysis method is developed based on the mathematical homogenization theory. For the incompressible flow of a linear viscoelastic Maxwell fluid, a well-posed multiscale system, including averaged equations and cell problems, is derived by employing the appropriate multiple scale asymptotic expansions to approximate the velocity, pressure and stress fields. And then, this multiscale system is solved numerically using the pseudospectral algorithm based on a time-splitting semi-implicit influence matrix method. The comparisons between the multiscale solutions and the direct numerical simulations demonstrate that the multiscale model not only captures large scale features accurately, but also reflects kinetic interactions between the large and small scale of the incompressible flow of a linear viscoelastic fluid.

Development of a Model for Calculating the Construction Duration of Urban Residential Housing Based on Multiple Regression Analysis (다중 회귀분석 기반 도시형 생활주택의 공사기간 산정 모델 개발)

  • Kim, Jun-Sang;Kim, Young Suk
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.93-101
    • /
    • 2021
  • As the number of small households (1 to 2 persons per household) in Korea gradually increases, so does the importance of housing supply policies for small households. In response to the increase in small households, the government has been continuously supplying urban housing for these households. Since housing for small households is a sales and rental business similar to apartments and general business facilities, it is important for the building owner to calculate the project's estimated construction duration during the planning stage. Review of literature found a model for estimating the duration of construction of large-scale buildings but not for small-scale buildings such as urban housing for small households. Therefore this study aimed to develop and verify a model for estimating construction duration for urban housing at the planning stage based on multiple regression analysis. Independent variables inputted into the estimation model were building site area, building gross floor area, number of below ground floors, number of above ground floors, number of buildings, and location. The modified coefficient of determination (Ra2) of the model was 0.547. The developed model resulted in a Root Mean Square Error (RMSE) of 171.26 days and a Mean Absolute Percentage Error (MAPE) of 26.53%. The developed estimation model is expected to provide reliable construction duration calculations for small-scale urban residential buildings during the planning stage of a project.

On the Study of Rationalization of Plant Layout - Orient ed Non-massing Jobbing Production Shop - (설비배치합리화에 관한 연구 - 다품종소량생산형태를 중심으로 -)

  • 조남호;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.7 no.10
    • /
    • pp.1-16
    • /
    • 1984
  • The purpose of this paper is to develop rational layout model for small and medium scale industry in Korea. The methodology of this paper is to light the importance of small and medium scale company. Moreover, to overcome the problem of layout in non-massing jobbing production shop this paper is proposed four techniques. So proposed layout model is obtained analytically in single, multiple facility location problem The result of this paper is as follows : First, alternatives to overcome abnormal layout in small and medium company are 1) GT (Group Technology) 2) SLP (Systematic Layout Planning) 3) OR (Operations Research) 4) Computer Second, in single facility location problem, Gradient method and square weighted average method are studied. Lastly in multiple facility location problem, heuristic method is obtained.

  • PDF

A Design of Small Scale Deep CNN Model for Facial Expression Recognition using the Low Resolution Image Datasets (저해상도 영상 자료를 사용하는 얼굴 표정 인식을 위한 소규모 심층 합성곱 신경망 모델 설계)

  • Salimov, Sirojiddin;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.75-80
    • /
    • 2021
  • Artificial intelligence is becoming an important part of our lives providing incredible benefits. In this respect, facial expression recognition has been one of the hot topics among computer vision researchers in recent decades. Classifying small dataset of low resolution images requires the development of a new small scale deep CNN model. To do this, we propose a method suitable for small datasets. Compared to the traditional deep CNN models, this model uses only a fraction of the memory in terms of total learnable weights, but it shows very similar results for the FER2013 and FERPlus datasets.

Assessment of End Condition of Drilled Shafts Socketed into Rock by Impact Echo Test (충격반향기법을 이용한 암반근입 현장타설말뚝의 선단조건 평가)

  • 김형우;김동수;김원철
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.21-32
    • /
    • 2002
  • Small and full scale model tests were performed to obtain the transient responses of shafts subjected to elastic impact by impact-echo test. Four end conditions of drilled shafts were considered: (1) free, (2) fixed, (3) rock-socketed, and (4) soft bottom. In small scale model tests, mock-up shafts were fabricated to simulate these four drilled shafts using poly-urethane and plastic material. Additionally, skin frictions between shaft and rock were changed to find out the effect of side contact on dynamic responses. All impact responses were tested in the air. Subsequently, full scale model tests were also carried out on concrete shafts that were in free and rock-socketed condition. The end conditions of the drilled shafts could be identified with good reliability by the waveforms from both small and full scale model tests. The results obtained in this study will provide an improved understanding of the impact responses for end conditions, especially for rock-socketed drilled shafts that are frequently designed and built in Korea.

Feasibility Study of Microturbine CHP and Greenhouse $CO_2$ Enrichment System as Small Scale LFG Energy Project (소규모 매립가스 자원화를 위한 마이크로터빈 열병합발전 및 유리온실 $CO_2$ 농도 증가 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu;Lee, In-Hwa
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2009
  • As new small scale LFG (landfill gas) energy project model which can improve economic feasibility limited due to the economy of scale, LFG-Microturbine combined heat and power system with $CO_2$ fertilization into greenhouses was proposed and investigated including basic design process prior to the system installation at Gwang-ju metro sanitary landfill. The system features $CH_4$ enrichment for stable microturbine operation, reduction of compressor power consumption and low CO emission, and $CO_2$ supplement into greenhouse for enhancement plant growth. From many other researches, high $CO_2$ concentration was found to enhance $CO_2$ assimilation (also known as photosynthesis reaction) which converts $CO_2$ and $H_2O$ to sugar using light energy. For small scale landfills which produce LFG under $3\;m^3$/min, among currently available prime movers, microturbine is the most suitable power generation system and its low electric efficiency can be improved with heat recovery. Besides, since its exhaust gas contains very low level of harmful contaminants to plant growth such as NOx, CO and SOx, microturbine exhaust gas is a suitable and economically advantageous $CO_2$ source for $CO_2$ fertilization in greenhouse. The LFG-Microturbine combined heat and power generation system with $CO_2$ fertilization into greenhouse gas to enhance plant growth is technologically and economically feasible and improves economical feasibility compared to other small scale LFG energy project model.

  • PDF

Analysis of Characteristics for Runoff Variation Considering Irrigation Area of Each Irrigation Facilities (수리시설물별 관개면적을 고려한 유출변화특성분석)

  • Ryoo, Kyong-Sik;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.643-651
    • /
    • 2008
  • This study was conducted to promote reliability of the simulated result for the long-term streamflow in Daecheong watershed. This system was constructed by the SSARR model that considered the effect of small scale irrigation facilities. We investigated the present condition of small scale irrigation facilities and analyzed the relation between irrigation facilities and river discharge. According to the analysis result about the effect of irrigation facilities, the error occurrence frequency was increased at the sub-basin that has many reservoirs and during the second quarter except for the 2003 year. Therefore, we created the relative equation between small irrigation facilities and river water and estimated the simulated streamflow for the main stations. Consequently, error of the runoff simulated with considering small scale irrigation facilities was decreased than that without considering small scale irrigation facilities at all.