• Title/Summary/Keyword: small object detection

Search Result 190, Processing Time 0.031 seconds

Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset (실생활 음향 데이터 기반 이중 CNN 구조를 특징으로 하는 음향 이벤트 인식 알고리즘)

  • Suh, Sangwon;Lim, Wootaek;Jeong, Youngho;Lee, Taejin;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.855-865
    • /
    • 2018
  • Sound event detection is one of the research areas to model human auditory cognitive characteristics by recognizing events in an environment with multiple acoustic events and determining the onset and offset time for each event. DCASE, a research group on acoustic scene classification and sound event detection, is proceeding challenges to encourage participation of researchers and to activate sound event detection research. However, the size of the dataset provided by the DCASE Challenge is relatively small compared to ImageNet, which is a representative dataset for visual object recognition, and there are not many open sources for the acoustic dataset. In this study, the sound events that can occur in indoor and outdoor are collected on a larger scale and annotated for dataset construction. Furthermore, to improve the performance of the sound event detection task, we developed a dual CNN structured sound event detection system by adding a supplementary neural network to a convolutional neural network to determine the presence of sound events. Finally, we conducted a comparative experiment with both baseline systems of the DCASE 2016 and 2017.

The Realization of Panoramic Infrared Image Enhancement and Warning System for Small Target Detection (소형 표적 탐지를 위한 파노라믹 적외선 영상 향상 장치 및 경보시스템 구현)

  • Kim Ki Hong;Kim Ju Young;Jung Tae Yeon;Jeon Byung Gyoon;Lee Eui Hyuk;Kim Duk Gyoo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.1
    • /
    • pp.46-55
    • /
    • 2005
  • In this paper, we realize the panoramic infrared warning system to detect the small threaten object and propose the infrared image enhancement method to improve the warning ability of this system. This system composes of the sense head unit, the signal processing unit, and so on. In the proposed system, the sense head unit acquires the panoramic IR image with 360 degree field of view(FOV) by rotating the thermal sensor. The signal processing unit divides panoramic image into four sub-images with 90 degree FOV and computes the adaptive plateau value by using statistical characteristics of each subimage. Then the histogram equalization is performed for each subimage by using the adaptive plateau value. We realize the signal Processing unit by using the DSP and FPGA to perform the proposed method in real time. Experimental results show that the proposed method has better discrimination and lower false alarm rate than the conventional methods in this warning system.

  • PDF

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.

Compact Doppler Sensor Using Oscillator Type Active Antenna (능동 발진 안테나를 이용한 소형 도플러 센서)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, a compact doppler sensor with oscillator type active antenna operating at 2.4GHz frequency band is proposed to measure the distance or speed of a moving object. The active antenna has been realized by oscillator using radiator, patch antenna, as its resonator. The oscillation frequency is shifted depending on approaching of the object, and a detection circuit discriminates the frequency deviation. The oscillator type active antenna has been designed and simulated. The prototype fabricated has a very small circular disk type of diameter 30mm and height 4.2mm. As for antenna performance, broadside radiation pattern with beamwidth of $130^{\circ}$ and oscillation frequency of 2.373GHz has been measured. Test results as a doppler sensor shows that doppler signal voltage of about 190mV has been obtained for conducting plate moving 1 meter away from the sensor. And, doppler signal voltage has been linearly increased to the ground from 4.5m height by free-falling the sensor.

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

Improved MOG Algorithm for Periodic Background (주기성 배경을 위한 개선된 MOG 알고리즘)

  • Jeong, Yong-Seok;Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2419-2424
    • /
    • 2013
  • In a conventional MOG algorithm, a small threshold for background decision causes the background recognition delay in a periodic background and a large threshold makes it recognize passing objects as background in a stationary background. This paper proposes the improved MOG algorithm using adaptive threshold. The proposed algorithm estimates changes of weight in the dominant model of the MOG algorithm both in the short and long terms, classifies backgrounds into the stationary and periodic ones, and assigns proper thresholds to them. The simulation results show that the proposed algorithm decreases the maximum number of frame in background recognition delay from 137 to 4 in the periodic background keeping the equal performance with the conventional algorithm in the stationary background.

Multi-Scale, Multi-Object and Real-Time Face Detection and Head Pose Estimation Using Deep Neural Networks (다중크기와 다중객체의 실시간 얼굴 검출과 머리 자세 추정을 위한 심층 신경망)

  • Ahn, Byungtae;Choi, Dong-Geol;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.313-321
    • /
    • 2017
  • One of the most frequently performed tasks in human-robot interaction (HRI), intelligent vehicles, and security systems is face related applications such as face recognition, facial expression recognition, driver state monitoring, and gaze estimation. In these applications, accurate head pose estimation is an important issue. However, conventional methods have been lacking in accuracy, robustness or processing speed in practical use. In this paper, we propose a novel method for estimating head pose with a monocular camera. The proposed algorithm is based on a deep neural network for multi-task learning using a small grayscale image. This network jointly detects multi-view faces and estimates head pose in hard environmental conditions such as illumination change and large pose change. The proposed framework quantitatively and qualitatively outperforms the state-of-the-art method with an average head pose mean error of less than $4.5^{\circ}$ in real-time.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

An Intelligent Video Image Segmentation System using Watershed Algorithm (워터쉐드 알고리즘을 이용한 지능형 비디오 영상 분할 시스템)

  • Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.309-314
    • /
    • 2010
  • In this paper, an intelligent security camera over internet is proposed. Among ISC methods, watersheds based methods produce a good performance in segmentation accuracy. But traditional watershed transform has been suffered from over-segmentation due to small local minima included in gradient image that is input to the watershed transform. And a zone face candidates of detection using skin-color model. last step, face to check at face of candidate location using SVM method. It is extract of wavelet transform coefficient to the zone face candidated. Therefore, it is likely that it is applicable to read world problem, such as object tracking, surveillance, and human computer interface application etc.

Application of Deep Learning Algorithm for Detecting Construction Workers Wearing Safety Helmet Using Computer Vision (건설현장 근로자의 안전모 착용 여부 검출을 위한 컴퓨터 비전 기반 딥러닝 알고리즘의 적용)

  • Kim, Myung Ho;Shin, Sung Woo;Suh, Yong Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.29-37
    • /
    • 2019
  • Since construction sites are exposed to outdoor environments, working conditions are significantly dangerous. Thus, wearing of the personal protective equipments such as safety helmet is very important for worker safety. However, construction workers are often wearing-off the helmet as inconvenient and uncomportable. As a result, a small mistake may lead to serious accident. For this, checking of wearing safety helmet is important task to safety managers in field. However, due to the limited time and manpower, the checking can not be executed for every individual worker spread over a large construction site. Therefore, if an automatic checking system is provided, field safety management should be performed more effectively and efficiently. In this study, applicability of deep learning based computer vision technology is investigated for automatic checking of wearing safety helmet in construction sites. Faster R-CNN deep learning algorithm for object detection and classification is employed to develop the automatic checking model. Digital camera images captured in real construction site are used to validate the proposed model. Based on the results, it is concluded that the proposed model may effectively be used for automatic checking of wearing safety helmet in construction site.