• Title/Summary/Keyword: small motion

Search Result 1,402, Processing Time 0.022 seconds

Comparison of the Outcomes according to the Injury Type of the Short Radiolunate Ligament in Fracture-Dislocation of the Radiocarpal Joint (요수근 관절의 골절-탈구에서 단요월상인대의 손상 형태에 따른 치료 결과의 비교)

  • Heo, Youn Moo;Kim, Tae Gyun;Song, Jae Hwang;Jang, Min Gu;Lee, Seok Won
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.1
    • /
    • pp.51-60
    • /
    • 2021
  • Purpose: Radiocarpal dislocation (RCD), which is caused by high-energy trauma, often involves radial styloid fractures and short radiolunate ligament (SRLL) injuries. Although SRLL injuries may occur as a simple rupture at the attachment site of radius, it may occur with a relatively large avulsed-fragment in the volar rim of the lunate facet of the radius. This study aimed to differentiate the injury type of SRLL and assess the differences in the treatment results depending on the treatment methods that have been applied in RCD with radial styloid fractures. Materials and Methods: Eighteen patients managed surgically with RCD were enrolled in this study. The patients were classified as Group 1 and Group 2 by using the Dumontier method. In this study, Group 2 was subdivided into 2A (purely ligamentous or small avulsion fracture of the volar rim of lunate facet) and 2B (large avulsed-fragment enough to internal fixation) according to the injury type of SRLL. Groups 2A and 2B were treated with direct repair and screw fixation, respectively. Pain, range of motion of the wrist joint, grip strength, and complications on final radiographs were examined. The outcomes were evaluated using patient-rated wrist evaluation (PRWE), and modified Mayo wrist score (MMWS). Results: All patients were Group 2 (six and twelve patients in 2A and 2B, respectively). The mean flexion to extension arch recovered 79%,and the mean grip strength was 72.9% of the uninjured side. Group 2A showed better recovery in extension, flexion and pronation than Group 2B, but there was no difference in radial deviation, ulnar deviation, supination, grip strength and pain. No differences in the PRWE and MMWS were observed between two groups. Complications included traumatic arthritis in seven patients and residual instability in five patients. Conclusion: When the SRLL was injured, the involvement of a large avulsion fracture on the anterior plane of the radiolunate did not affect the test results. On the other hand, it should be observed cautiously because avulsion fractures tend to disturb the joint's reduction through rotation or displacement. In addition, anatomical reduction and sturdy internal fixation are important for restoring the function of the SRLL.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF