• Title/Summary/Keyword: small holding

Search Result 181, Processing Time 0.029 seconds

Effects of Dehairing Methods and Sex on Pork Quality and Boar Taint Compound Levels in Tissues

  • Choi, Y.M.;Yun, Y.K.;Ryu, Y.C.;Shin, H.G.;Choe, J.H.;Nam, Y.J.;Kim, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1618-1623
    • /
    • 2007
  • The objective of this study was to investigate the effects of dehairing methods and sex on various traits of pork quality, as well as on tissue levels of the boar taint compounds androstenone and skatole. At the early postmortem period, dehided pigs showed higher muscle pH levels (p<0.05), lower temperatures (p<0.05) and lower drip loss (p<0.001) than scalded pigs. Thus, the dehairing method can affect the early postmortem glycolytic rate and water-holding capacity. Moreover, the differences in meat quality traits between the genders were small, and not considered to have practical importance. The scalding method had only a limited effect on the androstenone content. On the other hand, the scalded entire males exhibited a lower content of skatole than the dehided entire males (p<0.01). These results appear to indicate that the heating treatment from the scalding process influenced the reduction of skatole content for the scalded entire males.

Optimization of Process Condition for Fe Nano Powder Injection Molding

  • Oh, Joo Won;Lee, Won Sik;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • Nanopowders provide better details for micro features and surface finish in powder injection molding processes. However, the small size of such powders induces processing challenges, such as low solid loading, high feedstock viscosity, difficulty in debinding, and distinctive sintering behavior. Therefore, the optimization of process conditions for nanopowder injection molding is essential, and it should be carefully performed. In this study, the powder injection molding process for Fe nanopowder has been optimized. The feedstock has been formulated using commercially available Fe nanopowder and a wax-based binder system. The optimal solid loading has been determined from the critical solid loading, measured by a torque rheometer. The homogeneously mixed feedstock is injected as a cylindrical green body, and solvent and thermal debinding conditions are determined by observing the weight change of the sample. The influence of the sintering temperature and holding time on the density has also been investigated. Thereafter, the Vickers hardness and grain size of the sintered samples have been measured to optimize the sintering conditions.

Numerical Simulation Study on Supersonic Combustion using the Cavity (공동을 이용한 초음속 연소의 수치적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-260
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the flame holding and combustion enhancement. Additional fuel into the cavity prevents shear flow impingement on the trailing edge of the cavity. The high temperature freestream flow mixes with the cold hydrogen fuel that is injected into the cavity and raises the fuel temperature remarkably and become to start combustion. The high pressure in the cavity due to the cavity structure and combustion leads the hydrogen fuel to upstream. The shock in the cavity to be generated by the fuel injection joins together and reflects off the ceiling wall. This makes high pressure and low mach number region and makes a small recirculation in this region. This high stagnation temperature is nearly recovered in the shear layer in front of the cavity and leads to start combustion. In the downstream of the cavity, the wall pressure drops significantly. This means that the combustion phenomenon is diminished. Because fuel lumps at the trailing edge of the cavity then it spreads after the cavity so, in this region there is a strong expansion.

  • PDF

Non-explosive Separation Device Harnessing Spring Clamp and Shape Memory Alloy Wire (스프링 클램프와 형상기억합금 와이어를 이용한 비폭발식 분리장치)

  • Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Lee, Minhyung;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.7-12
    • /
    • 2015
  • In this paper, we report a non-explosive separation device for a small satellite which utilize a shape memory alloy actuator and spring clamp. In order to increase the preload, the proposed device employs spring clamp that can generate high toque when the shape memory alloy actuator makes the cylinder key unlatch a holding ball effectively. Owing to simple design of separation device configuration, we could obtain good repeatability(up to 30 times activation). Conclusively, we could develop a non-explosive separation device which can reliably activate within 1.2 sec under high preload(up to 300kgf).

LAND FARMING OF WATER PLANT ALUM SLUDGE ON ACID MINERAL SOIL AFFECTED BY ACID WATER

  • Lee, Seung-Sin;Kim, Jae-Gon;Moon, Hi-Soo;Kang, Il-Mo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.182-186
    • /
    • 2001
  • An acid forest surface soil as a land farming medium was treated with a water plant alum sludge at 0 to 18%. Indian mustard was grown in the treated soil in a greenhouse for 5 weeks and watered with pH 4 tap water adjusted with a mixed acid (1HNO$_3$: 2H$_2$SO$_4$) during plant growth. Changes in soil property, leachate chemistry, plant growth, and plant uptake of elements by the sludge treatment were determined. The alum sludge treatment increased buffer capacity to acidity, hydraulic conductivity, water holding capacity, and phosphate adsorption of the soil and decreased bulk density and mobility of small particles. The sludge treatment reduced leaching of Al, Mg, K, Na, and root elongation. Plant did uptake less amount of the cations and P but more Ca with the sludge treatment.

  • PDF

On the Micro-structures of Rapidly Solidified Al-Si Alloy Powder and Growth Direction of Eutectic Silicon (급속응고된 Al-Si 합금분말의 미세조직과 공정 Si 의 성장방향)

  • Ra, Hyung-Yong;Lee, Joo-Dong
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.453-458
    • /
    • 1988
  • Al-Si alloy powder produced by the gas atomizer showed fine eutectic structure between ${\alpha}-dendrites$, that was grown by coupled growth, and there remained small amount of ${\alpha}$ in Al - 20 wt% Si alloy. The morphology of Si in the eutectic structure was largely influenced by the recalescence caused by solidification latent heat, and that was thought to be due to decrement of the surface energy of Si. In modified eutectic Si by rapid solidification, fine twin about $0.01\;{\mu}m$ was observed and growth direction of eutectic Si was <112>. This fact implied that the growth mechanism of eutectic Si in rapid solidification was related to TPRE mechanism. Due to rapid solidification Si was soluble in ${\alpha}-phase$ in Al - 12.6wt%Si alloy up to about 3.4wt%, and the solubility of Si in ${\alpha}-phase$ reaches the equilibrium solubility stare after 60min, holding when it was held isothermally at $253-296^{\circ}C$.

  • PDF

The Effect of Alloying Elements and Heat Treatment on the Uniform Corrosion of 440A Martensitic Stainless Steel(I) (440A 강의 균일부식에 미치는 합금원소와 열처리의 영향(I))

  • Kim, Y.C.;Kang, C.Y.;Jung, B.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2011
  • 440A martensitic stainless steels which were modified with reduced carbon content(~0.5%) and addition of small amount of nickel, vanadium, tungsten and molybdenum were manufactured. Effects of alloying elements and tempering temperatures on the uniform corrosion in the solution of lN H2S04 were investigated through the electrochemical polarization test. When tempering temperature is constant, corrosion current density in active-passive transition point, Icorr, decreased a little with an increase of austenitizing temperature. In addition to this, when austenitizing temperature is constant, longer holding time showed a little lower Icorr and Ipass, passive current density. And when austenitized at $1050^{\circ}C$ and tempered in a range of $350{\sim}750^{\circ}C$, best anti-corrosion properties were obtained at $350^{\circ}C$ tempering temperature while worst at $450^{\circ}C$ or $550^{\circ}C$. The specimens tempered at below $450^{\circ}C$ and above $550^{\circ}C$, similar and good anti-corrosion characteristics were obtained regardless of alloying elements added, showing anti-corrosion characteristics are influenced more by tempering temperature than by alloying elements.

A Experimental Study of Cup forming by Stretch-Drawing Process (인장드로잉법에 의한 원통성형에 관한 실험적 연구)

  • 김영수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.123-128
    • /
    • 2000
  • Fundamental and informative data of axi-symmetric stretch-drawing of several sheetmetals with thicknesses of 0.7-1.0mm are presented both for single and double operations. Very small radius is applied to the die profile (or-shoulder) ion all operations. to induce wall-thinning by the effect of bending-under-tension from which the name 'stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by single and double stretch-drawings from smaller circular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks, From this fact it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional L.D.R (limiting drawing ratio) but the depth of the drawn cup should also be taken into account./ Many experimental data about various metals and thicknesses given in this paper offer a valuable information in this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation.

  • PDF

A Study on the Behavior of Wrinkling in the Square Cup Deep Drawing of Al Alloy (Al합금의 사각용기 딥드로잉시 주름의 거동에 관한 연구)

  • Ko, Dae-Lim;Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2009
  • Wrinkling in the flange and wall of a deep-drawn part is one of the major defects in sheet metal processes. Wrinkling is influenced by many factors, such as material properties, shape of the body, forming conditions, stress state and thickness, etc. It is difficult to analyze the wrinkling initiation and growth according to the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation even though small deviation of factors. In this study, the influence of wrinkling parameters, such as material properties (Al1050, Al5052), the blank holding force and the drawing depth on the wrinkling initiation and growth is investigated by using the experimental method and the dynamic explicit finite element analysis. From the results, it is shown that the dynamic explicit finite element method can be used effectively to prevent the wrinkling problems advancely in the deep drawing process. Also, there is a good agreement between the experimental result and the dynamic explicit finite element analysis.

Advanced SPS Systems and FGM Technolgy

  • Tokita, Masao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.11-11
    • /
    • 2000
  • Large-size ceramic/metal bulk FGMs have been fabricated on a recently developed and the world's largest Spark Plasma Sintering(SPS) systems, As a part of the development program for practical production processes and machines for FGMs by SPS, the processes, mechanical properties, dimensional size and shape effects, and production machine systems were investigated. In the past, $ZrO_{2}$/TiAI, $ZrO_{2}$/Ni, $Al_{2}O_{3}$/Ti, WC/Co, WC/Co/Steel, A1/P, Polymide, Cu/Polymide, nano-composites, porous and other combinations of bulk FGMs have already been processed using SPS. However, most of the specimen sizes were small, in a range of 20 to 30mm in diameter. Recently disk-shape sintered compacts with diameters of 100 and 150 mm, and thickness of approximately 15 and 17 mm, $ZrO_{2}$(3Y)/ stainless steel FGMs were homogenous consolidated in a shorter sintering time, while maintaining high quality and repeatability by utilizing a temperature gradient sintering method. The SPS heating up and holding time totaled less than one hour. Therefore, the SPS process in expected to find increased use in the fabrication of large-size FGMs as a new industrial processing technology. This paper introduces SPS systems, the processing principles, features and the characteristies of ceramic/metal bulk FGM.

  • PDF