• Title/Summary/Keyword: small cell lung cancer cells

Search Result 272, Processing Time 0.02 seconds

In vivo Radioprotective Effects of Basic Fibroblast Growth Factor in C3H Mice (Basic Fibroblast Growth Factor (bFGF)의 방사선보호작용에 대한 실험적 연구)

  • Kim, Yeon-Shil;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.253-263
    • /
    • 2002
  • Purpose : In order to understand in vivo radiation damage modifying of bFGF on jejunal mucosa, bone marrow and the effect of bFGF on the growth of transplanted mouse sarcoma 180 tumor in mice. Materials and Methods : Mice were treated with $6\;{\mu}g$ of bFGF at 24 hours and 4 hours before exposing to 600 cGy, 800 cGy and 1,000 cGy total body irradiation (TBI), and then exposed to 3,000 cGy local radiation therapy on the tumor bearing thigh. Survival and tumor growth curve were plotted in radiation alone group and combined group of bFGF and irradiation (RT). Histologic examination was performed in another experimental group. Experimental groups consisted of normal control, tumor control, RT (radiation therapy) alone, $6\;{\mu}g$ bFGF alone, combined group of $3\;{\mu}g$ bFGF and irradiation (RT), combined group of $6\;{\mu}g$ bFGF and irradiation (RT). Histologic examination was peformed with H-E staining in marrow, jejunal mucosa, lung and sarcoma 180 bearing tumor. Radiation induced apoptosis was determined in each group with the DNA terminal transferase nick-end labeling method ($ApopTag^{\circledR}$ S7100-kit, Intergen Co.) Results : The results were as follows 1) $6\;{\mu}g$ bFGF given before TBI significantly improved the survival of lethally irradiated mice. bFGF would protect against lethal bone marrow syndrome. 2) $6\;{\mu}g$ bFGF treated group showed a significant higher crypt depth and microvilli length than RT alone group (p<0.05). 3) The bone marrow of bFGF treated group showed less hypocellularity than radiation alone group on day 7 and 14 after TBI (p<0.05), and this protective effect was more evident in $6\;{\mu}g$ bFGF treated group than that of $3\;{\mu}g$ bFGF treated group. 4) bFGF protected against early radiation induced apoptosis in intestinal crypt cell but might have had no antiapoptotic effect in bone marrow stem cell and pulmonary endothelial cells. 5) There was no significant differences in tumor growth rate between tumor control and bFGF alone groups (p>0.05). 6) There were no significant differences in histopathologic findings of lung and mouse sarcoma 180 tumor between radiation alone group and bFGF treated group. Conclusions : Our results suggest that bFGF protects small bowel and bone marrow from acute radiation damage without promoting the inoculated tumor growth in C3H mice. Improved recovery of early responding normal tissue and reduced number of radiation induced apoptosis may be possible mechanism of radioprotective effect of bFGF.

Reversal of Multidrug Resistance with KR-30035: Evaluated with Biodistribution of Tc-99m MIBI in Nude Mice Bearing Human Tumor Xenografts (이종이식된 인체종양에서 KR-30035가 Tc-99m MIBI체내 분포에 미치는 영향으로 평가한 다약제내성 역전가능성)

  • Kim, Jung-Kyun;Lee, Byung-Ho;Choi, Sang-Woon;Yoo, Sung-Eun;Lee, Sang-Woo;Chun, Kyung-Ah;Ahn, Byeong-Cheol;Park, Jae-Young;Suh, Jang-Soo;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.168-184
    • /
    • 2001
  • Purpose: KR-30035 (KR), a new MDR reversing agent, has been found to produce a similar degree of increased Tc-99m MIBI uptake in cultured tumor cells over-expressing mdr1 mRNA compared to verapamil (VP), with less cardiovascular effects. We assessed the MDR-reversing ability of KR in vivo, and effects of various doses of KR on MIBI uptake un nude mice hearing P-glycoprotein (P-gp) positive (+) and P-gp negative (-) human tumor xenografts. Methods: P-gp (+) HCT15/CL02 colorectal and P-gp (-) A549 non-small cell cancer cells were inoculated in each flank of 120 nude mice (20 mice ${\times}$ 6 groups). Group 1 (Gr1) mice received 10mg/kg KR i.p. 3 times $({\times}3)$; Gr2, 10mg/kg VP i.p. ${\times}3$; Gr3, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.p. ${\times}1$; Gr4, 10mg/kg KR i.p. ${\times}2$ + 50mg/kg i.p. ${\times}1$; Gr5, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.v. ${\times}1$, GrC, controls. The mice were then injected with Tc-99m MIBI and sacrificed after 10 min, 30 min, 90 min and 240 min. Tumor uptake of MIBI (TU) in each group was compared. Results: TU in P-gp (+) and (-) tumors were both higher in Gr1 than Gr2. Washout rate between the 10 min and 4 hours was lower in Gr5 of P-gp (+) cell(0.93) than the control. Percentage increases in TU were higher in P-gp (+) than P-gp (-) tumors with all KR doses. Pgp (+) TU were highest at 10 mon (173% of GrC) and persisted up to 240 min (144%) in Gr3. Larger doses of KR resulted in a lesser degree of increase in P-gp (+) TU at 10 min (130% in Gr4 and 117% un Gr5) and 30 min (178%, 129%), but TU increased by time up to 240 min (177%, 196%). Heart and lung uptakes were markedly increased in Gr4 and Gr5 at 10 and 30 min, likely due to cardiovascular effects. No mice died. Conclusion: These data further suggest that KR that has significantly lower cardiovascular toxicity than verapamil can be used as an active inhibitor of MDR. Even a relatively low dose of KR significantly increased Tc-99m MIBI uptake in P-gp (+) tumors in vivo.

  • PDF