• Title/Summary/Keyword: small cell lung cancer cells

Search Result 274, Processing Time 0.821 seconds

Effect of 5-aza-2'-deoxycytidine on Cell Proliferation of Non-small Cell Lung Cancer Cell Line A549 Cells and Expression of the TFPI-2 Gene

  • Dong, Yong-Qiang;Liang, Jiang-Shui;Zhu, Shui-Bo;Zhang, Xiao-Ming;Ji, Tao;Xu, Jia-Hang;Yin, Gui-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4421-4426
    • /
    • 2013
  • Objective: The present study employed 5-aza-2'-deoxycytidine (5-Aza-CdR) to treat non-small cell lung cancer (NSCLC) cell line A549 to investigate the effects on proliferation and expression of the TFPI-2 gene. Methods: Proliferation was assessed by MTT assay after A549 cells were treated with 0, 1, 5, 10 ${\mu}mol/L$ 5-Aza-CdR, a specific demethylating agent, for 24, 48 and 72h. At the last time point cells were also analyzed by flow cytometry (FCM) to identify any change in their cell cycle profiles. Methylation-specific polymerase chain reaction (MSPCR), real time polymerase chain reaction(real-time PCR) and western blotting were carried out to determine TFPI-2 gene methylation status, mRNA expression and protein expression. Results: MTT assay showed that the growth of A549 cells which were treated with 5-Aza-CdR was significantly suppressed as compared with the control group (0 ${\mu}mol/L$ 5-Aza-CdR). After treatment with 0, 1, 5, 10 ${\mu}mol/L$ 5-Aza-CdR for 72h, FCM showed their proportion in G0/G1 was $69.7{\pm}0.99%$, $76.1{\pm}0.83%$, $83.8{\pm}0.35%$, $95.5{\pm}0.55%$ respectively (P<0.05), and the proportion in S was $29.8{\pm}0.43%$, $23.7{\pm}0.96%$, $15.7{\pm}0.75%$, $1.73{\pm}0.45%$, respectively (P<0.05), suggesting 5-Aza-CdR treatment induced G0/G1 phase arrest. MSPCR showed that hypermethylation in the promoter region of TFPI-2 gene was detected in control group (0 ${\mu}mol/L$ 5-Aza-CdR), and demethylation appeared after treatment with 1, 5, 10 ${\mu}mol/L$ 5-Aza-CdR for 72h. Real-time PCR showed that the expression levels of TFPI-2 gene mRNA were $1{\pm}0$, $1.49{\pm}0.14$, $1.86{\pm}0.09$ and $5.80{\pm}0.15$ (P<0.05) respectively. Western blotting analysis showed the relative expression levels of TFPI-2 protein were $0.12{\pm}0.01$, $0.23{\pm}0.02$, $0.31{\pm}0.02$, $0.62{\pm}0.03$ (P<0.05). TFPI-2 protein expression in A549 cells was gradually increased significantly with increase in the 5-Aza-CdR concentration. Conclusions: TFPI-2 gene promoter methylation results in the loss of TFPI-2 mRNA and protein expression in the non-small cell lung cancer cell line A549, and 5-Aza-CdR treatment could induce the demethylation of TFPI-2 gene promoter and restore TFPI-2 gene expression. These findings provide theoretic evidence for clinical treatment of advanced non-small cell lung cancer with the demethylation agent 5-Aza-CdR. TFPI-2 may be one molecular marker for effective treatment of advanced non-small cell lung cancer with 5-Aza-CdR.

Effects of Emodin Extracted from Chinese Herbs on Proliferation of Non-small Cell Lung Cancer and Underlying Mechanisms

  • He, Lin;Bi, Juan-Juan;Guo, Qian;Yu, Yin;Ye, Xiu-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1505-1510
    • /
    • 2012
  • To aim of this was to observe emodin-mediated cytotoxicity and its influence on Rad51 and ERCC1 expressionin non-small cell lung cancer (NSCLC). NSCLC cells were cultured in vitro with emodin at various concentrations (0, 25, 50, 75 and $100\;{\mu}mol/L$) for 48h and the proliferation inhibition rate was determined by the MTT method. Then, NSCLC were treated with emodin (SK-MES-1 $40\;{\mu}mol/L$, A549 $70\;{\mu}mol/L$) or $20\;{\mu}mol/L$ U0126 (an ERK inhibitor) for 48 h, or with various concentrations of emodin for 48 h and the protein and mRNA expressions of ERCC1 and Rad51 were determined by RT-PCR and Western blot assay, respectively. Emodin exerted a suppressive effect on the proliferation of NSCLC in a concentration dependent manner. Protein and mRNA expression of ERCC1 and Rad51 was also significantly decreased with the dose. Vacuolar degeneration was observed in A549 and SK-MES-1 cell lines after emodin treatment by transmission electron microscopy. Emodin may thus inhibited cell proliferation in NSCLC cells by downregulation ERCC1 and Rad51.

siRNA Silencing EZH2 Reverses Cisplatin-resistance of Human Non-small Cell Lung and Gastric Cancer Cells

  • Zhou, Wen;Wang, Jian;Man, Wang-Ying;Zhang, Qing-Wei;Xu, Wen-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2425-2430
    • /
    • 2015
  • Clinical resistance to chemotherapeutic agents is one of the major hindrances in the treatment of human cancers. EHZ2 is involved in drug resistance and is overexpressed in drug-resistant cancer cell lines. In this study, we investigated the effects of EHZ2 on cisplatin -resistance in A549/DDP and AGS/DDP cells. EHZ2 mRNA and protein were found to be significantly overexpressed in A549/DDP and AGS/DDP cells, compared to parental cells. EHZ2 siRNA successfully silenced EHZ2 mRNA and protein expression. Proliferation was inhibited and drug resistance to cisplatin was improved. Flow cytometry showed that silencing of EHZ2 arrested A549/DDP and AGS/DDP cells in the G0/G1 phase, increasing apoptosis, rh-123 fluorescence intensity and caspase-3/8 activities. Silencing of EHZ2 also significantly reduced the mRNA and protein expression levels of cyclin D1 and MDR1,while up-regulating p15, p21, p27 and miR-218 in A549/DPP cells. Furthermore, silencing of EHZ2 also significantly increased the expression level of tumor suppressor factor miR-218. We also found down-regulating EHZ2 expression increased methylation in A549/DDP and AGS/DDP cells. This study demonstrates that drug resistance can be effectively reversed in human cisplatin-resistant lung and gastric cancer cells through delivery of siRNAs targeting EHZ2.

The Antitumor Effect of C-terminus of Hsp70-Interacting Protein via Degradation of c-Met in Small Cell Lung Cancer

  • Cho, Sung Ho;Kim, Jong In;Kim, Hyun Su;Park, Sung Dal;Jang, Kang Won
    • Journal of Chest Surgery
    • /
    • 제50권3호
    • /
    • pp.153-162
    • /
    • 2017
  • Background: The mesenchymal-epithelial transition factor (MET) receptor can be overexpressed in solid tumors, including small cell lung cancer (SCLC). However, the molecular mechanism regulating MET stability and turnover in SCLC remains undefined. One potential mechanism of MET regulation involves the C-terminus of Hsp70-interacting protein (CHIP), which targets heat shock protein 90-interacting proteins for ubiquitination and proteasomal degradation. In the present study, we investigated the functional effects of CHIP expression on MET regulation and the control of SCLC cell apoptosis and invasion. Methods: To evaluate the expression of CHIP and c-Met, which is a protein that in humans is encoded by the MET gene (the MET proto-oncogene), we examined the expression pattern of c-Met and CHIP in SCLC cell lines by western blotting. To investigate whether CHIP overexpression reduced cell proliferation and invasive activity in SCLC cell lines, we transfected cells with CHIP and performed a cell viability assay and cellular apoptosis assays. Results: We found an inverse relationship between the expression of CHIP and MET in SCLC cell lines (n=5). CHIP destabilized the endogenous MET receptor in SCLC cell lines, indicating an essential role for CHIP in the regulation of MET degradation. In addition, CHIP inhibited MET-dependent pathways, and invasion, cell growth, and apoptosis were reduced by CHIP overexpression in SCLC cell lines. Conclusion: C HIP is capable of regulating SCLC cell apoptosis and invasion by inhibiting MET-mediated cytoskeletal and cell survival pathways in NCI-H69 cells. CHIP suppresses MET-dependent signaling, and regulates MET-mediated SCLC motility.

Induction of Indoleamine 2,3-dioxygenase (IDO) Enzymatic Activity Contributes to Interferon-Gamma Induced Apoptosis and Death Receptor 5 Expression in Human Non-small Cell Lung Cancer Cells

  • Chung, Ting Wen;Tan, Kok-Tong;Chan, Hong-Lin;Lai, Ming-Derg;Yen, Meng-Chi;Li, Yi-Ron;Lin, Sheng Hao;Lin, Chi-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7995-8001
    • /
    • 2014
  • Interferon-gamma (IFN-${\gamma}$) has been used to treat various malignant tumors. However, the molecular mechanisms underlying the direct anti-proliferative activity of IFN-${\gamma}$ are poorly understood. In the present study, we examined the in vitro antitumor activity of IFN-${\gamma}$ on two human non-small-cell lung carcinoma (NSCLC) cell lines, H322M and H226. Our findings indicated that IFN-${\gamma}$ treatment caused a time-dependent reduction in cell viability and induced apoptosis through a FADD-mediated caspase-8/tBid/mitochondria-dependent pathway in both cell lines. Notably, we also postulated that IFN-${\gamma}$ increased indoleamine 2,3-dioxygenase (IDO) expression and enzymatic activity in H322M and H226 cells. In addition, inhibition of IDO activity by the IDO inhibitor 1-MT or tryptophan significantly reduced IFN-${\gamma}$-induced apoptosis and death receptor 5 (DR5) expression, which suggests that IDO enzymatic activity plays an important role in the anti-NSCLC cancer effect of IFN-${\gamma}$. These results provide new mechanistic insights into interferon-${\gamma}$ antitumor activity and further support IFN-${\gamma}$ as a potential therapeutic adjuvant for the treatment of NCSLC.

Radiosensitization Effect of Overexpression of Adenovirus-mediated SIRT6 on A549 Non-small Cell Lung Cancer Cells

  • Cai, Yong;Sheng, Zhao-Ying;Liang, Shi-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7297-7301
    • /
    • 2014
  • Objective: To explore the radiosensitization effect of overexpression of silent information regulator 6 (SIRT6) on A549 non-small cell lung cancer (NSCLC) cells. Methods: Adenovirus vector Ad-SIRT6 causing overexpression of SIRT6 was established. Western blotting and MTT assay were adopted to detect the level of SIRT6 protein and the inhibitory rate of A549 cell proliferation after different concentrations of adenovirus transduction (0, 25, 100, 200, and 400 pfu/cell) for 24 h. Control group, Ad-null group and Ad-SIRT6 group were designed in this experiment and virus concentration of the latter two groups was 200 pfu/cell. Colony formation assays were employed to test survival fraction (SF) of the 3 groups after 0, 2, 4, 6, 8, 10 X-ray irradiation. Flow cytometry was used to detect the status of cell cycle of 3 groups after 48 h of 4Gy X-ray irradiation and Western blotting was used to determine the expression of apoptosis-related genes of 3 groups after 48 h of 4GyX-ray irradiation. Results: In the range of 25~400 pfu/cell, the inhibitory rate of A549 cell proliferation increased as adenovirus concentration raised. The inhibitory rates under the concentrations of 0, 25, 100, 200, and 400 pfu/cell were 0%, $4.23{\pm}0.34%$, $12.7{\pm}2.57%$, $22.6{\pm}3.38%$, $32.2{\pm}3.22%$, $38.7{\pm}4.09%$ and $47.8{\pm}5.58%$ and there were significantly differences among groups (P<0.05). SF in Ad-SIRT6 group was lower than Ad-null and control groups after 4~10Gy X-ray irradiation (P<0.05) and the sensitization enhancement ratio (SER) was 1.35 when compared with control group. Moreover, after 48 h of 4Gy X-ray irradiation, there appeared a significant increase in G1-phase cell proportion, upregulated expression of the level of apoptosis-promoting genes (Bax and Cleaved caspase-3), but a obvious decline in S-phase and G2-phase cell proportion and a significant decrease of the level of apoptosis-inhibiting gene (Bal-2) in the Ad-SIRT6 group (P<0.05). Conclusion: The over-expression of adenovirus-mediated SIRT6, which has radiosensitization effect on A549 cells of NSCLC, can inhibit the proliferation of A549 cells and cause G0/G1 phase retardation as well as induce apoptosis of cells.

Effects of Rad51 on Survival of A549 Cells

  • Yu, Sha-Sha;Tu, Yi;Xu, Lin-Lin;Tao, Xue-Qin;Xu, Shan;Wang, Shan-Shan;Xiong, Yi-Feng;Mei, Jin-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.175-179
    • /
    • 2015
  • Rad51, a key factor in the homologous recombination pathway for the DNA double-strand break repair, plays a vital role in genesis of non-small-cell lung cancer (NSCLC). In recent years, more and more studies indicate that high expression of Rad51 is of great relevance to resistance of NSCLC to chemotherapeutic agents and ionizing radiation. However, the underlying molecular mechanisms are poorly understood. In this study, we investigated the role of single Rad51 on cell viability in vitro. Our results show that depletion of endogenous Rad51 is sufficient to inhibit the growth of the A549 lung cancer cell line, by accumulating cells in G1 phase and inducing cell death. We conclude that independent Rad51 expression is critical to the survival of A549 cells and can be an independent prognostic factor in NSCLC patients.

Anticancer Activity of Taxillus yadoriki Parasitic to Neolitsea sericea against Non-Small Cell Lung Carcinoma

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.93-93
    • /
    • 2019
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of branches from Taxillus yadoriki parasitic to Neolitsea sericea (TN-NS-B) against human lung cancer cells, A549. TY-NS-B dose-dependently suppressed the growth of A549 cells. TY-NS-B decreased ${\beta}$-catenin protein level, but not mRNA level in A549 cells. The downregulation of ${\beta}$-catenin protein level by TY-NS-B was attenuated in the presence of MG132. Although TY-NS-B phosphorylated ${\beta}$-catenin protein, the inhibition of $GSK3{\beta}$ by LiCl did not blocked the reduction of ${\beta}$-catenin by TY-NS-B. In addition, TY-NS-B decreased ${\beta}$-catenin protein in A549 cells transfected with Flag-tagged wild type ${\beta}$-catenin or Flag-tagged S33/S37/T41 mutant ${\beta}$-catenin construct. Our results suggested that TN-NS-B may downregulate ${\beta}$-catenin protein level independent on GSK3${\beta}$-induced ${\beta}$-catenin phosphorylation. Based on these findings, TY-NS-B may be a potential candidate for the development of chemopreventive or therapeutic agents for human lung cancer.

  • PDF

Cathepsin D의 발현이 비소세포 폐암의 예후에 미치는 영향 (Influence of Cathepsin D Expression on Prognosis in Non-Small Cell Lung Cancer)

  • 염형렬;명재일;임종철;김한균;이남훈;이대호;고향미;문종영;강헌석;류형선;김완;박창수;박경옥
    • Tuberculosis and Respiratory Diseases
    • /
    • 제49권1호
    • /
    • pp.60-71
    • /
    • 2000
  • 배경 및 목적 : Cathepsin D는 리소솜에 위치하는 단백분해효소로서 종양의 침윤, 전이, 증식에 관여할 것으로 생각되며, 이러한 작용을 통해 예후에도 중요한 역할을 할 것으로 추정된다. 폐암에서의 Cathepsin D의 예후인자로서의 역할은 아직 확립되지 않고 논란이 많은 실정이다. 이 연구의 목적은 비소세포폐암에서 Cathepsin D 발현의 예후적인 중요성을 알고자 하였다. 방법 : 비소세포 폐암환자 중 치료 목적으로 수술적 처치를 시행한 총 54명의 환자를 대상으로 하여 적출한 폐조직의 면역조직화학적 염색으로 Cathepsin D의 발현을 관찰하고 생존기간 및 TNM 병기와의 관계를 보았다. 결과 : 종양세포에서의 Cathepsin D의 발현은 총 54례 중 18례에서 관찰되어 33.3%의 발현율을 보였으나, 발현군과 비발현군 사이에 조직학적 분화도, 암의 크기. 영역 림프절 침범, 병리조직적 병기(surgical-pathologic stage, p-stage)는 통계적인 유의한 차이를 보이지 않았다. 간질세포에서는 29례(53.7%)에서 중둥도에서 다량(moderate to massive)의 Cathepsin D가 발현되는 것이 관찰되었고, 발현양상과 병리조직적 병기사이에 통계적으로 유의한 관련성이 있었으나(p=0.031), 각각의 조직학적 분화도, 암의 크기, 영역 림프절 침범과는 관계가 없었다. 종양세포와 세포에서의 Cathepsin D 의 발현은 생존율로 표현한 예후와의 유의한 관련성이 없었다. 예후와 관련된 변수를 사용한 다변량 분석결과 영역림프절 침범이 유일한 독립적 예후인자가 되었으며 Cathepsin D는 예후 인자로서의 의미는 없었다. 결론 : 비소세포폐암의 간질세포내 Cathepsin D 발현양상은 병리조직적 병기와 유의한 관련성을 나타내어 종양 진행과의 관련 가능성을 제사하였으나, 다른 임상병리인자들 및 예후와의 관련성은 없었다. 종양세포내에서의 Cathepsin D 발현은 병리조직적 병기를 포함한 임상병리 인자들 및 예후와 관계가 없었다.

  • PDF

Tabebuia avellanedae에서 유래된 ${\beta}>-lapachone$의 인체폐암세포 apoptosis 유발에 관한 연구 (Growth Inhibition of Human Lung Carcinoma Cells by ${\beta}>-lapachone$ through Induction of Apoptosis)

  • 최병태;이용태;최영현
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.722-728
    • /
    • 2005
  • The DNA topoismerase I inhibitor ${\beta}-lapachone$, the product of a lapacho tree (Tabebuia avellanedae) from South America, activates a novel apoptotic response in a number of cell lines. In the present report, we investigated the effects of ${\beta}-lapachone$ on the growth of human lung in human non-small-cell-lung-cancer A549 cells. Upon treatment with ${\beta}-lapachone$, a concentration-dependent inhibition of cell viability and cell proliferation was observed as measured by hemocytometer counts and MTT assay. The ${\beta}-lapachone-treated$ cells developed many of the hallmark features of apoptosis, including membrane shrinking, condensation of chromatin and DNA fragmentation. These apoptotic effects of ${\beta}-lapachone$ in A549 cells were associated with a marked induction of pro-apoptotic Bax expression, however the levels of anti-apoptotic Bcl-2 expression were decreased in a dose-dependent manner. Accordingly, elevated amount of cyclin-dependent kinase inhibitor p21 expression accompanied by up-regulation of tumor suppressor p53 was observed. By RT-PCR analyses, decrease in gene expression level of telomerase reverse transcriptase and telomeric repeat binding factor were also observed. Thus, these findings suggest that ${\beta}-lapachone$ may be a potential anti-cancer therapeutics for the control of human lung cancer cell model.