• Title/Summary/Keyword: slurry oil

Search Result 37, Processing Time 0.024 seconds

A Development of Recycling Technology of Solar Cell Wafering Slurry (태양전지 Wafering Slurry 재생기술 개발에 관한 연구)

  • Na, Won-Shik;Lee, Jae-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.426-431
    • /
    • 2010
  • 68% of the manufacturing costs of solar cell wafer can be attributed to the slurry. The recycling of slurries is mandatory for reducing the costs of manufacturing wafering production, and the disposal of industrial waste, as well as for cutting down pollution levels. Slurries are currently being recycled using the centrifuge(decanter) method. However, this method is less than optimal as it does not completely remove the fine particles, leading to low quality. Also, be cause of the incomplete separation from the oil, it causes the impurities in the dried slurries. This study aims to develope a new recycling technology that overcomes the flaws of the centrifuge by utilizing chemicals. It will provide a total solution to the crucial process of recycling slurries in the making of solar cell wafer, by increasing the efficiency and renewable rate.

An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet (석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구)

  • 채재우;조용철;전영남;한영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2159-2168
    • /
    • 1992
  • Coal-water slurry is considered to have the potential for displacing petroleum used in the existing oil-fired industrial and utility boilers. The combustion of coal-water slurry(CWS) is a complex process and little is known about the detailed mechanism. In this paper the combustion behavior of a single suspended droplet of CWS in hot gas stream was investigated. The effect of coal particle size, water content in droplet, initial droplet size, ambient temperature and oxygen fraction in ambient gas were studied. The results are as follows; (1) Increasing the oxygen fraction in ambient gas considerably reduced the char combustion time. (2) The variation of water content and coal particle size in droplet showed little effect on the combustion behavior. (3) In the relatively high temperature ambient gas, the water evaporation time became shorter and the combustion process was stable.

Influence of the Diamond Abrasive Size during Mechanical Polishing Process on the Surface Morphology of Gallium Nitride Substrate (Gallium Nitride 기판의 Mechanical Polishing시 다이아몬드 입자 크기에 따른 표면 Morphology의 변화)

  • Kim, Kyoung-Jun;Jeong, Jin-Suk;Jang, Hak-Jin;Shin, Hyun-Min;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.32-37
    • /
    • 2008
  • Freestanding hydride vapor phase epitaxy grown GaN(Gallium Nitride) substrates subjected to various polishing methods were characterized for their surface and subsurface conditions, Although CMP(Chemical Mechanical Polishing) is one of the best approaches for reducing scratches and subsurface damages, the removal rate of Ga-polar surface in CMP is insignificant($0.1{\sim}0.3{\mu}m$/hr) as compared with that of N-polar surface, Therefore, conventional MP(Mechanical Polishing) is commonly used in the GaN substrate fabrication process, MP of (0001) surface of GaN has been demonstrated using diamond slurries with different abrasive sizes, Diamond abrasives of size ranging from 30nm to 100nm were dispersed in ethylene glycol solutions and mineral oil solutions, respectively. Significant change in the surface roughness ($R_a$ 0.15nm) and scratch-free surface were obtained by diamond slurry of 30nm in mean abrasive size dispersed in mineral oil solutions. However, MP process introduced subsurface damages confirmed by TEM (Transmission Electronic Microscope) and PL(Photo-Luminescence) analysis.

이액상계를 이용한 토양슬러리 반응기에서의 PAH 거동 특성

  • 이재영;백기태;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.144-147
    • /
    • 2003
  • In this study, the mass transfer behaviors of phenanthrene, anthracene, and pyrene in soil slurry reactor (SSR) using two-liquid phase (TLP) system were investigated. The mass transfer ratio and rate of PAH in the TLP system using light paraffine oil, which has the highest solubility of PAH, were influenced by the amount of light paraffine oil and mixing speed. When the amount of light paraffine oil decreased from 15 % to 2.5 % (v/v), the mass transfer ratio of anthracene decreased significantly compared with that of phenanthrene and pyrene. As mixing speed increased, the initial mass transfer rate of PAH within 1 day was enhanced. However, each final mass transfer ratio of three PAHs after 5 day was similar irrespective of mixing speed.

  • PDF

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

Effect of Aromatic Additives on the Coke Reduction and the Asphaltene Conversion in a Slurry-phase Hydrocracking (슬러리상 수첨분해 반응에서 아로마틱 유분 첨가에 따른 코크 저감 및 아스팔텐 전환 특성)

  • Lim, Suk Hyun;Go, Kang Seok;Nho, Nam Sun;Lee, Jae Goo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.244-252
    • /
    • 2019
  • This study investigated the effect of addition of aromatics such as Toluene/LCO/resin on the coke depression and asphaltene conversion. The experiment was carried out with vacuum residue as a feedstock with Molybdenum dispersed catalysts under the slurry-phase hydrocracking condition (Temp. of $425^{\circ}C$, $H_2$ pressure of 80 bar at $80^{\circ}C$, reaction time of 4 hr, Mo-concentration of 500 ppm). As results, the coke reduction was shown to be similar irrespective of types of aromatics, while asphaltene was more converted to gas and maltene when LCO and resin with higher dipole moment were added. The addition of aromatics with change of reaction time showed no difference in terms of depression of coke formation. But the addition of LCO rather increased the coke yield after 2 hr. And it was found that asphaltene in liquid phase had the higher aromaticity index so that asphaltene is difficult to disperse in oil phase.

Synthesis of molecularly imprinted polymer (MIP) by radiation-induced polymerization and separation of ferulic acid from rice oil using MIP-packed column

  • Yoon, Seok-Kee;Lee, Jae-Chan;Lee, Seung-Ho;Choi, Seong-Ho;Kim, Hwa-Jung;Park, Hae-Jun;Kang, Hee-Dong
    • Analytical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.218-225
    • /
    • 2006
  • A molecularly imprinted polymer (MIP) was synthesized by radiation-induced polymerization (RIP), where the ferulic acid was used as a template molecule, 4-vinylpyridine as a monomer and ethylene glycoldimethacrylate (EGDMA) as a cross-linking monomer. The MIP was packed in a glass column using a slurry method for use in medium pressure liquid chromatography (MPLC). The MPLC column was tested for separation and purification of ferulic acid from the rice oil. When repeated three times, the MPLC separation/purification yielded the ferulic acid with the purity higher than ~99%. The chemiluminescence of the luminal (5-amino-2,3-dihydro-1,4-phtalazinedione) measured on a potato disc slide (5.0 mm thick) was enhanced in the presence of ferulic acid, while, without the ferulic acid, the chemiluminescence of luminol on the potato slice disc was not observed, which suggests the ferulic acid obtained from the rice oil can be useful for immunoassay.

SiC Synthesis by Using Sludged Si Power (폐슬러지 Si 분말을 이용한 SiC 제조)

  • 최미령;김영철;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.67-71
    • /
    • 2003
  • Sawing silicon ingot with abrasive slurry generates sludge that includes abrasive powders, cutting oil, and silicon powders. The abrasive powders and cutting oil are being separated and reused. Mixing the remained stodged silicon powders with carbon powders and subsequent heat-treatment are conducted to produce silicon carbide. The size of SiC whiskers and powders was smaller than the conventionally grown silicon carbide whiskers that were synthesized by adding micron-size metal impurities. Impurity related mechanism is attributed to the formation of the silicon carbide whiskers, as metal impurities are contained in the stodged silicon powders.

  • PDF

Enhanced Biodegradation of Lindane Using Oil-in-Water Bio-Microemulsion Stabilized by Biosurfactant Produced by a New Yeast Strain, Pseudozyma VITJzN01

  • Abdul Salam, Jaseetha;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1598-1609
    • /
    • 2013
  • Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindane-contaminated environments.

Manufacturing of 3N Grade Silica by Thermal Oxidation using the Recovered Silicon from the Diamond Wire Sawing Sludge (다이아몬드 와이어 쏘잉 슬러지로부터 회수(回收)한 실리콘의 열산화(熱酸化)에 의한 3N급(級) 실리카 제조(製造))

  • Jeong, Soon-Taek;Kim, Nam-Chul
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.37-43
    • /
    • 2013
  • Unlike the conventional slurry type wire sawing, the diamond wire sawing method adopts diamond plated wire as sawing media instead of slurry consisted of both silicon carbide and oil. Wafering with diamond plated wire leaves solid element of the sludge mostly made up of silicon, and it is not difficult to recover 95% or more of silicon by a simple separation process of oil from the sludge. In this study, silicon was recovered from the sludge by drying process and organic and metal impurities were removed by sintering process. As result 3N grade silica was obtained successfully by thermal processing utilized the fact that the recovered silicon readily combines with oxygen due to fine particle size.