• Title/Summary/Keyword: slurry fluidity

Search Result 11, Processing Time 0.019 seconds

Rheological Properties of Cement Using Admixtures (혼합재를 첨가한 시멘트의 레올로지 특성)

  • 양승규;이웅종;김동석;정연식;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.271-276
    • /
    • 2003
  • This study is about the rheological properties of cement slurry using admixtures. The variables are the type of cement(Type I, II, IV, V) and the substitution ratio of admixtures such as fly ash and slag. As a result of measuring the fluidity of various types of cement slurry at the early stage, type 2, type 4 and type 5 showed the similar property. The fluidity of type 1 and ternary blended cement was low. it is thought that it is because of the high $C_3$A content. The cement slurries containing mineral admixtures were superior in the property of fluidity retention.

  • PDF

Effects of Microstructure Morphology on Fluid Flow Characteristics of A356 Commercial Alloy in Semi-Solid Slurry (반고상 A356 합금 슬러리의 미세조직에 따른 유동특성에 관한 연구)

  • Kim, Jae-Min;Lee, Seung-Hoon;Hong, C.P.
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.240-248
    • /
    • 2005
  • The rheocasting characteristics are strongly influenced by the microstructural morphology such as particle size, form factor and contiguity. In this study, the effect of structural morphology on fluid flow characteristics of A356 semi-solid alloy was investigated with a vacuum suction fluidity test. Semi-solid metal slurry was made by the mechanical stirring, the liquidus casting, and H-NCM to be analysed. H-NCM could obtain uniform and fine globular microstructures of 0.9 form factor and 55 ${\mu}m$ particle size. Inoculation was found to be effective for reducing particle size, however, for H-NCM it should be avoided due to the cause of increasing contiguity. The fluidity test indicated that the non-stirring method had higher fluidity and smaller liquid segregation in the same solid faction of 0.4 than the stirring method, for smaller particle size and higher form factor. It was observed that liquid segregation decreased as the particle size is smaller and form factor is higher. The results of die-casting experiment were a good agreement with those of fluidity test.

Properties of Plaster Mold for Open Cell Aluminum Foam (발포금속 제조를 위한 석고주형의 특성)

  • Kim, Ki-Young;Paik, Nam-Ik
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.253-259
    • /
    • 2001
  • There are many methods to produce metal foams, which can be classified into three groups according to the state of the starting metal i.e. liquid or powder or solid. Three types of defects such as cell closing, cell deformation or breakdown and cell misrun are thought to be occurred when we make the open cell aluminum foams by precision casting. Filling ability of the mold slurry between preform is related with cell closing, mold collapsibility is related with cell deformation or breakdown, mold temperature and pouring pressure are related with cell misrun. These factors can be evaluated by measuring slurry fluidity, burnout strength and permeability of the mold. Properties of the plaster mold were evaluated to find optimum mold conditions for high quality open cell aluminum foam in this study. Permeability was almost zero independent of burnout conditions, however, crack initiation was found on the surface of all specimens one or two minutes after taking out from the furnace. Crack has grown and disappeared with time. This crack may facilitate the mold filling when molten metal is poured, because of the improved mold permeability. It was considered that crack initiation and disappearance was closely related with temperature difference between the surface and inner part. Knocking-out the mold is a difficult problem due to the small cell size, because continuous mesh structure of the metal foam is not strong. It is not easy to remove molding material after pouring. We can expect that water quenching can facilitate the knocking-out the mold after solidification without damaging cell structures. Collapsed particles after water quenching became bigger with the increase in time.

  • PDF

Properties and Applicability Evaluation of Control Low Strength Materials Used Industrial by-Products of A Great Quantity (다량의 산업부산물을 활용한 슬러리계 되메움 재료의 물성 및 현장적용 가능성 평가)

  • Liao, Xiaokai;Her, Jae-Won;Kim, Dong-Hun;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.40-41
    • /
    • 2020
  • This study has resulted in the following findings. First, Using more than 30% of GBFS to replace FA enabled bleeding control through improved fluidity. Moreover, it has been confirmed that effective strength and proper quality can be achieved when it was applied as a backfilling material with higher early strength than the base material. Second, When using more than 30% of FNS to replace sand, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Third, When using more than 30% of both GBFS and FNS in combination, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Also, it was confirmed that proper mixing of 15~60% of GF secured the effective strength and desired quality as a refiller and joint filler material.

  • PDF

Evaluation of Field Applicability of Controlled Low Strength Materials as Cavity Filling Materials Various Industrial by Products (공동충전재로써 산업부산물을 복합적으로 활용한 슬러리계 되메움의 현장적용성 평가)

  • Liao, XiaoKai;Kim, Dong-Hun;Lim, Nam Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.72-73
    • /
    • 2021
  • In this study, the engineering characteristics of CLSM mixed with GBFS and GF were identified to review the applicability as a replacement material and further evaluate the recharge and field applicability as a joint filler material. First, Using more than 30% of GBFS to replace FA enabled bleeding control through improved fluidity. Second, When using more than 30% of FNS to replace sand, it was found that adding 0.25~0.35 of the AE agent is effective for bleeding control through improved fluidity. Third, When using more than 30% of both GBFS and FNS in combination, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Also, it was confirmed that proper mixing of 15~60% of GF secured the effective strength and desired quality as a refiller and joint filler material.

  • PDF

Evaluation on Light Scattering Behavior of a Pulverized Coal Suspension (슬러리내 석탄입자의 광산란 특성 평가)

  • Hwang, Munkyeong;Nam, Hyunsoo;Kim, Kyubo;Song, Juhun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.451-460
    • /
    • 2013
  • In a direct coal fuel cell (DCFC) system, it is essential to identify volume fraction of coal suspended in electrolyte melt in order to control its dispersion and fluidity. This requirement is compelling especially at anode channel where hot slurry is likely to flow at low velocity. In this study, light scattering techniques were employed to measure the volume fraction for a pulverized coal suspension with relatively high absorption coefficient. The particle size, scattering angle, and volume fraction were varied to evaluate their effects on the scattering behavior as well as scattering regime. The larger coal size and smaller forward scattering angle could provide a shift to more favorable scattering regime, i.e., independent scattering, where interferences of light scattering from one particle with others are suppressed.

Development of a High Strength Al-Si-Mg Alloy for Rheo-diecasting (레오다이캐스팅을 위한 고강도 Al-Si-Mg 합금설계)

  • Park, Kyu-Sup;Jang, Young-Soo;Choi, Byoung-Hee;Kang, Byung-Kuen;Kim, Hae-Soo;Choi, Sang-Ho;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • Recently, development of Al-based alloys for high mechanical performance has been an important issue in automotive industry. The present study focused on the design of a high strength Al-based alloy for rheo-diecasting. The research was based on thermodynamic calculation and experimentals to optimize the alloy compositions. Two important considerations were carried out: i) to obtain uniform slurry with fine and globular microstructures for rheo-diecasting, ii) to be strengthend by T6 heat treatment. In order to evaluate the effect of Si content on the slurry microstructure and castability, thermodynamic calculation and fluidity test were carried out. The effects of various alloying components, such as Mg, Cu and Zn, on age hardenability were also investigated. The mechanical properties of the rheo-diecasting products using the newly developed alloy are 324MPa in tensile strength, 289MPa in yield strength, and 11.2% in elongation after T6 heat treatment.

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

Thermal Conductive Characteristics and Basic Properties of Bentonite Grouts for the Ground Heat Exchanger of Geo-source Heat Pump (지열히트펌프 지중열교환기용 벤토나이트계 그라우트재의 열전도특성 및 기본성능)

  • Bai, Kang
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.66-72
    • /
    • 2013
  • In this study, the thermal conductive characteristics and basic properties of the nine commercial products of bentonite grouts were studied. Six of the nine products for ground heat exchanger systems are imported and others for civil engineering are domestic. The thermal conductivities of all bentonite products are nearly similar among products. The free swell indexes, viscosities and filter losses of the ground heat exchanger grouts are lower than those of the civil engineering ones. These characteristics seem to increase of the fluidity to fill the bentonite slurry to bore-hall perfectly, rather than to prevent underground water penetration. Thus, the mixtures of bentonites and sands are recommended for high thermal conduction grouts.

Effect of Chemical Parameters on Aqueous Acrylamide Gelcasting (수용성 Acrylamide 겔캐스팅에 대한 화학적 변수의 영향)

  • Yun, Seog-Eun;Woo, Sang-Kuk;Bae, Kang;Kim, Dong-Pyo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.748-753
    • /
    • 1999
  • In gelcasting process of the Si powder slurry mixed with acrylamide monomers, it was characterized the effects of chemical parameters such as monomers and additives(polymerization initiator, catalyst and dispersant), Si powder and humidity at drying on processing parameters such as viscosity and idle time as well as on shrinkage and mechanical strength of green bodies. Generally, idle time decreased as initiator and catalyst amounts were increased, but rather depended on initiator. Idle times of the slurries greatly decreased to less than 1/2 time of the premix solutions in which gelation was delayed at higher MBAM portion as a crosslinking monomer. And fluidity of the slurries became worse at greater than 0.6 wt % dispersant. The green bodies showed only less than 7% of linear shrinkage without crack and distortion when dried for longer than 300 hrs under 98% humidity. Typically, the dried bodies containing 40, 50 vol % of Si powder displayed 64 and 36 Mpa in average, respectively.

  • PDF