• Title/Summary/Keyword: slurry TBM

Search Result 32, Processing Time 0.023 seconds

A study on the evaluation method of blow-out and segment lining buoyancy stability of a slurry shield TBM (쉴드TBM 이수분출 및 세그먼트라이닝 부력 안정성 평가방법 연구)

  • Jang, Yoon-Ho;Kim, Hong-Joo;Shin, Young-Wan;Chung, Hyuk-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.375-393
    • /
    • 2022
  • This study was deal with blow-out and buoyancy stability evaluation method for slurry shield TBM. When applying a slurry shield TBM for the construction of a shallow tunnel under river or sea, the stability of slurry blow-out and segment lining buoyancy should be evaluated. However, there is a problem in that the currently applied theoretical formula is somewhat complicated, making it inconvenient to calculate in practice. In this study, some simple charts were proposed to easily evaluate the stability of slurry blow-out and segment lining buoyancy. In addition, the buoyancy safety factor of segment lining using the strength reduction method was evaluated and compared with the buoyancy safety factor based on the theoretical formula. The buoyancy safety factor by the theoretical formula was evaluated to be rather small, and it was confirmed that it was on the safe side. The simplified charts for the evaluation of slurry blow-out and buoyancy stability presented in this study are expected to be usefully utilized in the planning and design of undersea tunnels.

A study on the wear and replacement characteristics of the disc cutter through data analysis of the large diameter slurry shield TBM field (대구경 이수식 쉴드TBM 현장의 데이터 분석을 통한 디스크커터의 마모 및 교체 특성 연구)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.57-78
    • /
    • 2022
  • The disc cutter and cutterbit, which are the most important factors to increase the excavation efficiency of TBM, are key factors in the design and construction of the cutter head. The arrangement, spacing, number, size, and material of disc cutters suitable for the ground conditions determine the success or failure of TBM construction. The disc cutter, which is a representative consumable part in TBM construction, can cause enormous disruption to the construction cost as well as the construction cost unless accurate prediction of wear and replacement cycle is accompanied. Therefore, in this study, the method of calculating the replacement cycle of the disc cutter calculated at the time of design for the slurry shield TBM field, and the depth of wear and replacement location of the disc cutter that occurred during actual construction were compared by analyzing the field data. For a quantitative comparison, weathered soil/weathered rock, soft rock, and hard rock were classified according to the ground in the section showing constant excavation data, and the trajectory of circle was different depending on the location of the disc cutter, so it was compared and analyzed.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.

A fundamental study on the minimize wear of slurry shield TBM sludge bend pipe (이수식 쉴드 TBM 배니곡관 마모 최소화를 위한 기초 연구)

  • Soo-Jin Lee;Hyeon-Do Kim;Yong-Woo Kim;Sang-Hwan Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.243-254
    • /
    • 2024
  • Currently, due to industrial development in domestic regions, buildings are saturated not only in major city centers but also in surrounding urban areas. Accordingly, people's attention has focused on underground spaces, and tunnels are being widely used, especially in urban development. Research on tunnels and tunnel excavation methods is actively underway. However, there is a lack of research on the wear and tear problems of sludge discharge pipes when using a slurry shield TBM. Therefore, in this paper, the L-shaped bend pipe used in the existing sludge discharge pipe was transformed into a T-shaped bend pipe to move sludge. As a result, it was confirmed that compared to the L-shaped bend pipe, the impact of the T-shaped bend pipe on the bend pipe when discharging sludge was reduced. Based on these results, it is expected that wear of the sludge discharge pipe can be minimized by using a T-shaped bend pipe when using slurry shield TBM equipment. This is expected to ultimately lead to economic benefits, such as reducing costs due to replacement of curved pipes or additional welding during tunnel construction.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock (화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구)

  • Park, Hyunku;Oh, Ju-Young;Chang, Seokbue;Lee, Seungbok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • This paper presents a case study on the ground settlement and volume loss estimation for slurry pressure balanced shield TBM tunnelling in weathered zone of granite rock. Settlement at each stage of shield tunnelling was analyzed and the volume losses and settlement trough factors were estimated from observations. In addition, using the existing volume loss evaluation method in literature, volume losses were estimated considering ground properties and actual driving parameters. Most of ground settlement occurred during passage of shield skin passage and after backfill grouting, and the measured total volume loss and trough curves appeared to coincide with literature. Shield and tail loss obtained from field measurement were found to be around 90% and 60% of the predictions, where tail loss indicated larger deviation than shield loss.

Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique (쉴드 TBM 기계 데이터 및 머신러닝 기법을 이용한 암석의 일축압축강도 예측)

  • Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.214-225
    • /
    • 2020
  • Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

A Study of Shield TBM Tunnelling-induced Volume Loss Estimation Considering Shield Machine Configurations and Driving Data (쉴드 TBM의 장비 형상 및 굴진 데이터를 고려한 체적손실 산정 연구)

  • Park, Hyunku;Chang, Seokbue;Lee, Seungbok
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.397-407
    • /
    • 2015
  • Estimation of shield TBM tunnelling-induced volume loss is of great importance for ground settlement control. This study proposed a simple method for evaluation of volume loss during TBM tunnlling, which is able to take into account of shield machine configurations and main driving data in calculation. The method was applied to analyze the tunnelling cases with earth pressure balanced and slurry pressure balanced shiled TBM, and mostly, reasonable agreements with monitoring results were found. Additional discussions were made for some disagreements.