• Title/Summary/Keyword: slow nova

Search Result 3, Processing Time 0.017 seconds

THE HIGH RESOLUTION SPECTRA OF PU VUL IN 2004 - I (2004년 PU VUL의 고분산 스펙트럼 - I)

  • Yoo, Kye-Hwa
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.43-48
    • /
    • 2005
  • We present a high resolution spectrum of PU Vul observed at Bohyunsan Optical Astronomy Observatory (BOAO) on April 9, 2004. Permitted emission and nebular lines of PU Vul had been significantly changed compared to all spectra observed since its eruption in 1979. Therefore all new lines should be re-identified and were done so. We do-convoluted a $H{\beta}$ line into several emission components with Gaussian functions. Then we carefully discussed the geometrical feature of PU Vul in April 2004.

HIGH RESOLUTION SPECTRUM OF SYMBIOTIC STAR AG PEGASI (공생형 별 AG PEGASI의 고해상 스펙트럼)

  • Yoo, Kye-Hwa
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 2006
  • We report a high resolution spectrum of AG Pegasi observed at Bohyunsan Optical Astronomy Observatory (BOAO) on October 2, 2004. Some of permitted emission lines, for example H I, He I, He II, Fe II and Ti II were observed in the spectrum of AG Pegasi in 2004. Lines presented in the longer wavelength region than $6500{\AA}$ are identified. And radial velocities for each element are measured. Then we carefully discuss the geometrical feature of AG Pegasi in October 2004.

Magellan High Resolution Spectroscopy of Raman-Scattered He II, C II and O VI Lines in the Symbiotic Nova RR Telescopii

  • Heo, Jeong-Eun;Lee, Hee-Won;Di Mille, Francesco;Palma, Tali;Angeloni, Rodolfo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.87.2-87.2
    • /
    • 2017
  • RR~Telescopii is a symbiotic nova exhibiting accretion activities through gravitational capture of the slow stellar wind from a Mira variable. We present high resolution spectra of RR~Tel obtained with MIKE and the 6.5 m Magellan-Clay telescope, in which we find broad features with FWHM exceeding $10{\AA}$ at 6545, 6825, 7082, 7023 and $7053{\AA}$. They are formed through Raman-scattering with atomic hydrogen of far-UV He II 1025, O~VI 1032, $1038{\AA}$ and C II 1036 and $1037{\AA}$. We compute the Raman conversion efficiencies using the case B recombination theory for He II emissions, which are used in turn to infer the intrinsic line luminosities of O VI and C II. The Raman O~VI features are characterized by double-peaked profiles with a peak separation ~ 60km/s, pointing out the presence of an accretion disk with a physical size of ~ sub AU. In contrast, Raman C II features exhibit profiles with a simple peak and a narrower width ~40 km/s, indicating that C II is formed in a much more extended region. The weak C II multiplet at 1335, $1336{\AA}$ found in the IUE spectral archive and the absence of C II 1036, $1037{\AA}$ in the FUSE archive show that far-UV C II lines suffer heavy interstellar extinction consistent with the distance of ~ 2.5 kpc to RR Tel.

  • PDF