• Title/Summary/Keyword: slot combination

Search Result 72, Processing Time 0.032 seconds

Design Considerations and Validation of Permanent Magnet Vernier Machine with Consequent Pole Rotor for Low Speed Servo Applications

  • Chung, Shi-Uk;Chun, Yon-Do;Woo, Byung-Chul;Hong, Do-Kwan;Lee, Ji-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1146-1151
    • /
    • 2013
  • This paper deals with design consideration and validation of a new pole-slot combination for permanent magnet vernier machine (PMVM) with consequent pole (CP) rotor especially for extremely low speed servo applications. A 136pole-24slot PMVM with CP rotor is introduced and analyzed by 2D and 3D finite element analysis (FEA) and discussion on experimental validation is also included.

A Hierarchical MAC Protocol for QoS Support in Wireless Wearable Computer Systems

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • A recent major development in computer technology is the advent of wearable computer systems. Wearable computer systems employ a wireless universal serial bus (WUSB), which refers to a combination of USB with the WiMedia wireless technical specifications. In this study, we focus on an integrated system of WUSB over wireless body area networks (WBANs) for wireless wearable computer systems. However, current WBAN MACs do not have well-defined quality of service (QoS) mapping and resource allocation mechanisms to support multimedia streams with the requested QoS parameters. To solve this problem, we propose a novel QoS-aware time slot allocation method. The proposed method provides fair and adaptive QoS provisioning to isochronous streams according to current traffic loads and their requested QoS parameters by executing a QoS satisfaction algorithm at the WUSB/WBAN host. The simulation results show that the proposed method improves the efficiency of time slot utilization while maximizing QoS provisioning.

Analysis of Outer Rotor Type BLDC motor vibration characteristics according to slot combination (Outer Rotor Type BLDC 모터의 슬롯 수에 따른 진동 특성 분석)

  • Bang, Ki-Chang;Kim, Kwang-Seok;Kwon, Joong-Hak;Ree, Yeong-Uk;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.196-201
    • /
    • 2008
  • This paper is about electromagnetic vibration source in outer rotor type of BLDC motors. Experiments are carried out with three pole-slot combinations which are 6 slots, 12 slots, and 24 slots with 4 poles rotor. According to results, vibration sources separate into electromagnetic and mechanical factors. Using the finite element method (FEM), It is analyed that vibration characteristics of electromagnetic source in each type. This paper shows electromagnetic sensitivity to vibration, and introduces necessary point in lower vibration motors. Also rotor balance is important to prevent uneven distribution of magnetic flux between rotor and stator.

  • PDF

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

Measurement of the Residual Stress in the Steel Wires by using Focused Ion Beam and Digital Image Correlation Method (집속 이온빔과 디지털 화상 관련법을 이용한 고 탄소 미세 강선의 잔류 응력 측정)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.323-328
    • /
    • 2007
  • The residual stress in axial direction of the steel wires has been measured by using a method based on the combination of the focused ion beam(FIB) milling and digital image correlation(DIC) program. The residual stress is calculated from the measured displacement field before and after the introduction of a slot along the steel wires. The displacement is obtained by the digital correlation analysis of high-resolution scanning electron micrographs, while the slot is introduced by FIB milling with low energy beam. The experimental procedures are described and the feasibilities are demonstrated in steel wires fabricated with different conditions. It reveals that the tensile residual stress is formed in all steel wires and this is strongly influenced by the fabrication conditions.

Polynomial Time Algorithm for Satellite Communications Scheduling Problem with Capacity Constrainted Transponder

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.47-53
    • /
    • 2016
  • This paper deals with the capacity constrained time slot assignment problem(CTSAP) that a satellite switches to traffic between $m{\times}n$ ground stations using on-board $k{\leq}_{min}\{m,n\}$ k-transponders switching modes in SS/TDMA time-division technology. There was no polynomial time algorithm to solve the optimal solution thus this problem classified by NP-hard. This paper suggests a heuristic algorithm with O(mn) time complexity to solve the optimal solution for this problem. Firstly, the proposed algorithm selects maximum packet lengths of $\({mn \atop c}\)$ combination and transmits the cut of minimum packet length in each switching mode(MSMC). In the case of last switching mode with inefficient transmission, we applies a compensation strategy to obtain the minimum number of switching modes and the minimum makespan. The proposed algorithm finds optimal solution in polynomial time for all of the experimental data.

Tunable-Slot-Type Ground Radiation Antenna with Dual Band Operation Using LC Resonator

  • Zahid, Zeeshan;Kim, Hyeongdong
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2017
  • A dual-band tunable-slot-type ground radiation antenna is proposed. The feeding structure consists of a coplanar waveguide and a lumped capacitor to excite currents for first- and second-order resonant modes of the ground. The resonant frequencies of both bands are controlled using a series combination of a capacitor and an inductor. The proposed design may be an attractive choice for mobile devices owing to its compact geometry and tunable operating frequencies. The measurement and simulation results of the proposed antenna show good agreement, indicating good impedance matching and radiation performance.

Fabrication and Design of a Compact Narrow Band Pass Filter Using Slot Type Split Spiral Resonators (슬롯형 분할 나선형 공진기를 이용한 소형 협 대역통과 필터 설계 및 제작)

  • Choi, Dong-Muk;Kim, Dang-Oh;Jo, Nam-I;Kim, Che-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.38-42
    • /
    • 2010
  • In this paper, a design method of the compact narrow band filter on the microstrip board is proposed using slot-type split spiral resonators. The design technique of this filter is based on cascading filter stages consisting of the combination of slot-type split spiral resonators, capacitive gaps between patches, and inductive grounded stubs with the meander configuration. By these means, it was possible to get the nearly symmetric frequency responses, adjustable bandwidths, compact sizes. And also excellent characteristic of the out-of-band rejection is achieved in contrast to the conventional filter design technique. The measured insertion loss shows good results about -3.47dB at the center frequency($f_0$=1GHz) and passband return loss is less than -12.62dB. The 3dB fractional bandwidth(FBW) is approximately 7.3%. The results of the frequency response measured on the fabricated band pass filter substrate show satisfactory agreement with the simulated frequency responses by the MWS(Microwave Studio) of CST in the region of interest.