• Title/Summary/Keyword: sloshing waves

Search Result 26, Processing Time 0.018 seconds

Critical Free Surface Flows in a Sloshing Tank

  • Scolan, Y.M
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • There are many issues in fluid structure interactions when dealing with the free surface flows in a sloshing tank. For example the problem of how yielding a highly nonlinear wave with a simple forced motion over a short duration is of concern here. Nonlinear waves are generated in a rectangular tank which is forced horizontally; its motion consists of a single cycle of oscillation. One of the objectives is to end up with a shape of the free surface yielding a wide range of critical flows by tuning few parameters. The configuration that is studied here concerns a plunging breaker accompanied with a critical jet where great kinematics are simulated. The numerical simulations are performed with a twodimensional code which solves the fully nonlinear free surface boundary conditions in Potential Theory.

Motion and Sloshing Analysis for New Concept of Offshore Storage Unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2002
  • A New concept for the LNG-FPSO ship, with moonpool and bilge step in bottom, is proposed. This concept is investigated with regard to motion reduction and sloshing phenomena of the cargo and operation tanks. The principal dimensions of the ship are $L\timesb B\times D\times t(design)=270.0\times51.0\times32.32\times13.7(m)$, with a total cargo capacity of 161KT; a 98% loading condition is considered for this study. The moonpools and rectangular step at the bilge have been designed for the purpose of decreasing the motion within the tank. For the motion analysis, linearized three-dimensional diffraction theory, with the simplified boundary condition was used. The six-degree of freedom coupled motion responses were calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel were taken into account in this calculation program, using an empirical formula suggested by Himeno(1981). The case study for the moonpool size has been conducted using theoretical estimation and the experimental method. For the optimization of the moonpool size and effect of the bilge step, 9 cases of its size, both with and without bilge step, were involved in the study. no motion responses, especially roll motion, for the designed LNG-FPSO ships are much lower than those of other drill ships and shuttle tankers. The limit criterions are satisfied. To check the cargo tank and operation tank sizes, we performed a sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and 5 tanks of LNG-FPSO with chamfers. Finally, optimum tank sire was estimated.

  • PDF

A Study on Rescu Technique and Safe Tow of Damaged Ship(4) - Dynamic Stability of Damaged Ship in Beam Wind and Waves - (손상된 선박의 구난 기술 및 안전 예항에 관한 연구(4) - 손상된 선박의 횡풍.횡풍중에서의 동적 안전성 -)

  • 손경호;이상갑;최경식;김용기
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10b
    • /
    • pp.27-36
    • /
    • 1998
  • This paper presents a brief outline of dynamic stability of damaged ship in rough, beam wind and waves. The one degree-of-freedom, linear roll equation is adopted with the effects of damage fluid and external forces, but without the effect of sloshing. We evaluate the dynamic stability in terms of capizing probability based on energy balance mechanics and risk analysis , the method of which was proposed by Umeda [2] to the high speed crafts. As a result, we can predict the dynamic stability quantitatively according to sea state , operating and damage conditions.

  • PDF

Design of Floating Type Wave Energy Convertor with Direct Drive Turbine (파랑을 이용한 부유식 직접 구동 터빈의 설계)

  • Choi, HyenJun;Choi, JongWoong;Kim, ChangGoo;Lee, YoungHo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.165.2-165.2
    • /
    • 2011
  • Dye to recent development such as increasing price of fossil fuels and energy offers such a solution. Wave energy supplies. Weve energy offers such a solution. Wave energy is the most consistent of all the intermittent renewable energy sources. In addition to this, very large energy fluxes occur in the ocean waves and by using appropriate wave energy converters the energy can be harnessed. The present study looks at utilizing a direct drive turbine of cross flow type to extract energy from ocean waves indirectly. This novel design incorporates a turbine in an enclosed in a closed tank. utilizing the energy generated from sloshing.

  • PDF

Effect of Pretension on Moored Ship Response

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.175-187
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like Exploration and drilling vessels, Production barges, Cable-laying vessels, Rock dumping vessels, Research and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modelled and tested in the wave basin. The pretensions of the lines are varied by altering the touchdown points and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs calculated for various situations provide better insight to the designer.

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

Experimental study on moonpool resonance of offshore floating structure

  • Yang, Seung-Ho;Kwon, Sun-Hong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2013
  • Offshore floating structures have so-called moonpool in the centre area for the purpose of drilling, installation of subsea structures, recovery of Remotely-Operated Vehicle (ROV) and divers. However, this vertical opening has an effect on the operating performance of floating offshore structure in the vicinity of moonpool resonance frequency; piston mode and sloshing mode. Experimental study based on model test was carried out. Moonpool resonance of floating offshore structure on fixed condition and motion free condition were investigated. And, the effect of cofferdam which is representative inner structure inside moonpool was examined. Model test results showed that Molin's theoretical formula can predict moonpool resonance on fixed condition quite accurately. However, motion free condition has higher resonance frequency when it is compared with that of motion fixed. The installation of cofferdam moves resonance frequency to higher region and also generates secondary resonance at lower frequency. Furthermore, it was found that cofferdam was the cause of generating waves in the longitudinal direction when the vessel was in beam sea.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.

Extreme Value Analysis of Statistically Independent Stochastic Variables

  • Choi, Yongho;Yeon, Seong Mo;Kim, Hyunjoe;Lee, Dongyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.222-228
    • /
    • 2019
  • An extreme value analysis (EVA) is essential to obtain a design value for highly nonlinear variables such as long-term environmental data for wind and waves, and slamming or sloshing impact pressures. According to the extreme value theory (EVT), the extreme value distribution is derived by multiplying the initial cumulative distribution functions for independent and identically distributed (IID) random variables. However, in the position mooring of DNVGL, the sampled global maxima of the mooring line tension are assumed to be IID stochastic variables without checking their independence. The ITTC Recommended Procedures and Guidelines for Sloshing Model Tests never deal with the independence of the sampling data. Hence, a design value estimated without the IID check would be under- or over-estimated because of considering observations far away from a Weibull or generalized Pareto distribution (GPD) as outliers. In this study, the IID sampling data are first checked in an EVA. With no IID random variables, an automatic resampling scheme is recommended using the block maxima approach for a generalized extreme value (GEV) distribution and peaks-over-threshold (POT) approach for a GPD. A partial autocorrelation function (PACF) is used to check the IID variables. In this study, only one 5 h sample of sloshing test results was used for a feasibility study of the resampling IID variables approach. Based on this study, the resampling IID variables may reduce the number of outliers, and the statistically more appropriate design value could be achieved with independent samples.

Dynamic Stability of a Damaged Ship in Beam Wind and Waves (손상된 선박의 횡풍.횡파중에서의 동적 안정성)

  • K.H. Sohn;S.G. Lee;K.S. Choi;Y.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.50-59
    • /
    • 2000
  • This paper presents a brief outline of dynamic stability of a damaged ship at final stage of flooding in rough beam wind and waves. One degree-of-freedom, roll equation is adopted with effects of flooding water and external forces due to wind and waves, but without effect of sloshing. We discuss the dynamic stability of the damaged ship in terms of capsizing probability based on risk analysis, the method of which was firstly proposed by Umeda et al.[6] to high speed craft in intact condition. As a result, we can evaluate the dynamic stability of the damaged ship in probabilistic manner according to sea state, operating condition and damage situation.

  • PDF