• Title/Summary/Keyword: sloping angle

Search Result 33, Processing Time 0.026 seconds

Study on an 8-Wheel Suspension to Enhance the Hill-Climbing Performance for a Planetary Exploration Rover

  • Eom, We-Sub;Lee, Joo-Hee;Gong, Hyun-Cheol;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.347-351
    • /
    • 2014
  • Planetary exploration rovers are likely to make a trip on a winding and sloping road of irregular surfaces to the destination in order to accomplish scientific missions. One of the key technologies for rovers is a suspension for traveling and performing exploration missions; the suspension is an essential area of technology for a stable movement of a rover. In this study, an 8-wheel suspension is designed to enable efficient climbing of slopes on a passage to the destination. For the two front wheels among the eight wheels, the moment at the pivot connecting two wheels is derived when the distance between the wheels and the torque of wheels are same. A test experiment was performed to compare the magnitude of moment according to the change in tilt angle and the position of the pivot. Finally, a suspension design considering the position of the pivot was proposed to enhance the hill-climbing performance.

Generation of Unit Shape Layer on CAD/CAM System for VLM-ST (VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

Analysis of Sloping Ground When Lifting with Force Platform (힘판을 이용한 들기 작업시의 경사면 분석)

  • 서승록;김종석
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.77-86
    • /
    • 2000
  • Even manual materials handling tasks(MMHT) is decreasing by adopt of automatic manufacturing system & transportation supporting machine because of increase of productivity, wage lack of labor, safety, in fact working at inclined & complicated slope such as farm, orchard, harbor loading & unloading, logging place and mining place can't be substituted by machine perfectly. So, workers should do MMHT at this place by themselves, lifting on slope can cause much of hazard, include falling. Keeping balance net to slip can be a reason of low back pain(LBP) by overloaded musculoskeletal system but, there's no enough study about lift on slope. Therefore, In this study, we assessed and analyzed change of center of pressure(COP) when lifting on slope by force platform. The result showed that the length lengthen as increasing angle of slope. Especially, the length extremely increased over 15°. Through These basic result, present proper angle boundary, prevent industrial accidents and give proper data not only lifting but also pushing and pulling on slope someday.

  • PDF

The Optical Tolerances' Decision of the Ophthalmic Dispensing for Korean Models (한국형 안경조제의 광학적 허용오차 설정)

  • Kim, YongGeun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.189-199
    • /
    • 1998
  • The system for optical tolerances of completion spectacles was made to sum of the accumulated error - the circumstances on composing prescription, the visual-distance, the tilting angle, the losing of a temple, the vertex distance, the axis of toric lens and the sloping of lens etc. It was given by the relation of allowed values size(T) and power(D), $T=T_0e^{-aD}$. Here, $T_0$ is the size of allowed values of plane-lens with power is 0 and ${\alpha}$ is the factor of allowed values. In case of being adopted to new form s tolerance corresponding to RAL 915, for the tolerance is large direction, the factor of allowed values ${\alpha}$ is $0.166(T_0=5.90)$ and for the tolerance is small direction, the factor of allowed values ${\alpha}$ is $0.166(T_0=2.95)$.

  • PDF

A Survey Study on the development of Omni-Wheel Drive Rider Robot with autonomous driving systems for Disabled People and Senior Citizens (자율주행 탑승용 옴니 드라이브 라이더 로봇 개발에 대한 장애인과 고령자의 욕구조사)

  • Rhee, G.M.;Kim, D.O.;Lee, S.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • This study provides development information on Omni-Wheel Drive Rider Robot, futuristic electric scooters, with autonomous driving systems that are used for people including the disabled and senior. Also, it is meaningful in suggesting alternatives to replace motorized wheelchairs or electric scooters for the future. Prior to development of Omni-Wheel Drive Rider Robot with autonomous driving systems, it surveyed 49 people, including 18 people who own electric scooters and 31 senior people who have not. The summary of the survey is as follows. First, inconveniences during riding and exiting and short mileage due and safety driving to problems of recharging batteries are the most urgent task. For these problems, the study shows that charging time of batteries, mileage, armrests, footrests, angle of a seat are the primary considerations. Second, drivers prefer joystick over steering wheels because of convenience in one-handed driving against dangers from footrest and carriageways sloping roads, paving blocks. One-handed driving can reduce driving fatigues with automatic stop systems. Moreover, the study suggests many design factors related to navigation systems, obstacle avoidance systems, omni-wheels, automatic cover-opening systems in rainy.

  • PDF

Evaluation of Stiffness Structure and Grouting Efficiency beneath the Precast Slab Track by Elastic Wave Tests (탄성파시험에 의한 프리캐스트 슬래브궤도의 강성구조와 충전성능 평가)

  • Lee, Il-Wha;Joh, Sung-Ho;Jang, Seung-Yup;Kang, Youn-Suk;Han, Sung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1303-1308
    • /
    • 2007
  • Recently, precast concrete tracks are replacing ballast track for efficient and economic maintenance of track. Precast concrete railroad tracks are manufactured in factory, and transported to railroad construction site for installation. Therefore, quality of precast concrete track itself should be sufficiently good. On the contrary to the convenient manufacturing of precast concrete track, the installation of a precast concrete track requires careful steps. Typically, a precast concrete track is placed on an approximately 15-cm thick lean concrete layer. A mortar is filled between lean concrete layer and precast concrete track to adjust the sloping angle of a precast concrete track for a safe train operation at a curvy section. Then, the use of filled mortarproduces a void underneath a precast concrete track, which is harmful to structural safety of a precast concrete track undercyclic loading. Therefore, it is essential to make sure that there is no void left beneath a precast concrete track after mortar filling. In the continuous resonance method, the amplitude of frequency response measured using an instrumented hammer and an accelerometer is plotted against a pseudo-depth, which is half of the wave velocity divided by frequency. The frequency response functions are measured at consecutive measurement locations, 6-cm interval between measurement points, and then combined together to generate a 2-D plot of frequency response. The sections with strong reflections or large amplitude of frequency response are suspicious areas with internal voids and unfilled areas. The 2-D frequency response plot was efficient in locating problematic sections just by examining the color shade of a visualized plot in 2-D format. Some of the problematic sections were drilled to make a visual inspection of mortar filling. The visual image of interface between mortar and precast concrete track was verified using the validity of the continuous resonance technique adopted in this research.

  • PDF

Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model (수치모형에 의한 연안해역 해수운동의 분석)

  • Lee, Hee-Young;Jeoung, Sun-Kil
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • The unproper development of the nearshore zone can enhance the diffusion of pollutant in the nearshore zone resulting in unbalanced sediment budget of beach which causes alteration of beach topography. Therefore, it is required to predict the effects of the envirnmental change quantitatively. In this paper, the depth-averaged and time-averaged energy balance equation is selected to acount for the wave transformation such as refraction, shoaling effect, the surf zone energy disipation, wave breaking index and bore, due to wave breaking in the shore region.(Numerical solutions are obtained by a finite difference method, ADI and Upwind. For the calculation of the wave-induced current, the unsteady nonlinear depth-averaged and time-averaged governing equation is derived based on the continuity and momentum equation for imcompressible fluid.) Numerical solutions are obtained by finite difference method considering influences of factors such as lateral mixing coefficient, bed shear stress, wave direction angle, wave steepness, wave period and bottom slope. The model is applied to the computation of wave transformation, wave-induced current and variation of mean water leel on a uniformly sloping beach.

  • PDF

Establishment of Sewage Collection Measure and Charging Automation System (분뇨수거량 계량 및 청소요금시스템)

  • Hong, Dae-Seung;Lee, Jang-Hun;Kang, Sun-Hong;Yim, Hwa-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.487-492
    • /
    • 2010
  • In this study, our system that the volume of collected human waste in the septic tank truck is measured accurately and the fee of disposing human waste can be calculated by using measured results has been developed. The level sensor and its circuits which can measure the height of the tank, the hand-held system that can be used by workers easily and simply with micro-controller have been developed. Also, this system has been built in the receipt printing function to charge for disposal fee. Even when working on a sloping field, this system can measure the accurate collected volume of human waste in the tank using the X-Y axis angle sensor. The results of this study expect that the popular complaints that generated from human waste can be reduced, the exportation possibility of our specialized systems can acquire foreign currency.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.

Mechanical Analysis of the Force on Landing 3 Type Curves(Ellipse, Circle, Brachistochrone) of Halfpipe (스노우보드 하프파이프 점프시 착지 충격에 관한 3가지 곡선(타원, 원, 브라키스토크론)의 역학적 해석)

  • Lee, Un-Hak;Kim, Kew-Wan;Park, In-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.1-19
    • /
    • 2008
  • This research is to analyze the force on landing 3 Type of Halfpipe Curves(Ellipse, Circle, Brachistochrone) based on the mechanical calculation of normal force on a sloping surface. Jumping off a platform on a bard horizontal surface, the flexing of the legs, the softness of the snow, the angle of the landing surface, initial velocity and the forward motion of the snowboarder can contribute to reducing the force on landing. But halfpipe is significantly determined by the curvature of surface. It is definitely verified that the Brachistochrone curve is more safety than others. However currently using the Ellipse curve is mostly safe too. If we consider the efficiency of construction, we can easily think there is no use of another curves except normal ellipse curved halfpipe. It would better that geometrically verity curved halfpipe should be designed for improving fluent skills to snowboarders. This methode of research can be a model of scientifical research on sports safety how can sportsman reduce critical injury by designing optimal halfpipe facilities and manual.