• Title/Summary/Keyword: slope topography

Search Result 359, Processing Time 0.025 seconds

한강하류지형면의 분류와 지형발달에 대한 연구 (양수리에서 능곡까지)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.23-73
    • /
    • 2005
  • Purpose of study; The purpose of this study is specifically classified as two parts. The one is to attempt the chronological annals of Quaternary topographic surface through the study over the formation process of alluvial surfaces in our country, setting forth the alluvial surfaces lower-parts of Han River area, as the basic deposit, and comparing it to the marginal landform surfaces. The other is to attempt the classification of micro morphology based on the and condition premising the land use as a link for the regional development in the lower-parts of Han river area. Reasons why selected the Lower-parts of Han river area as study objects: 1. The change of river course in this area is very serve both in vertical and horizontal sides. With a situation it is very easy to know about the old geography related to the formation process of topography. 2. The component materials of gravel, sand, silt and clay are deposited in this area. Making it the available data, it is possible to consider about not oかy the formation process of topography but alsoon the development history to some extent. 3. The earthen vessel, a fossil shell fish, bone, cnarcoal and sea-weed are included in the alluvial deposition in this area. These can be also valuable data related to the chronological annals. 4. The bottom set conglometate beds is also included in the alluvial deposits. This can be also valuable data related to the research of geomorphological development. 5. Around of this area the medium landform surface, lower landform surface, pediment and basin, are existed, and these enable the comparison between the erosion surfaces and the alluvial surfaces. Approach : 1. Referring to the change of river beds, I have calculated the vertical and horizontal differences comparing the topographic map published in 1916 with that published in 1966 and through the field work 2. In classifying the landform, I have applied the method of micro morphological classification in accordance with the synthetic index based upon the land conditions, and furthermore used the classification method comparing the topographic map published in 1916 and in that of 1966. 3. I have accorded this classification with the classification by mapping through appliying the method of classification in the development history for the field work making the component materials as the available data. 4. I have used the component materials, which were picked up form the outcrop of 10 places and bored at 5 places, as the available data. 5. I have referred to Hydrological survey data of the ministry of Construction (since 1916) on the overflow of Han-river, and used geologic map of Seoul metropolitan area. Survey Data, and general map published in 1916 by the Japanese Army Survbey Dept., and map published in 1966 by the Construction Research Laboratory and ROK Army Survey Dept., respectively. Conclusion: 1. Classification of Morphology: I have added the historical consideration for development, making the component materials and fossil as the data, to the typical consideration in accordance with the map of summit level, reliefe and slope distribution. In connection with the erosion surface, I have divided into three classification such as high, medium and low-,level landform surfaces which were classified as high and low level landform surfaces in past. furthermore I have divided the low level landform surface two parts, namely upper-parts(200-300m) and bellow-parts(${\pm}100m$). Accordingly, we can recognize the three-parts of erosion surface including the medium level landform surface (500-600m) in this area. (see table 22). In condition with the alluvial surfaces I have classified as two landform surfaces (old and new) which was regarded as one face in past. Meamwhile, under the premise of land use, the synthetic, micro morphological classification based upon the land condition is as per the draw No. 19-1. This is the quite new method of classification which was at first attempted in this country. 2. I have learned that the change of river was most severe at seeing the river meandering rate from Dangjung-ni to Nanjido. As you seee the table and the vertical and horizontal change of river beds is justly proportionable to the river meandering rate. 3. It can be learned at seeing the analysis of component materials of alluvial deposits that the component from each other by areas, however, in the deposits relationship upper stream, and between upper parts and below parts I couldn't always find out the regular ones. 4. Having earthern vessel, shell bone, fossil charcoal and and seaweeds includen in the component materials such as gravel, clay, sand and silt in Dukso and Songpa deposits area. I have become to attempt the compilation of chronicle as yon see in the table 22. 5. In according to hearing of basemen excavation, the bottom set conglomerate beds of Dukso beds of Dukso-beds is 7m and Songpa-beds is 10m. In according to information of dredger it is approx. 20m in the down stream. 6. Making these two beds as the standard beds, I have compared it to other beds. 7 The coarse sand beds which is covering the clay-beds of Dukso-beds and Nanjidobeds is shown the existence of so-called erosion period which formed the gap among the alluvial deposits of stratum. The former has been proved by the sorting, bedding and roundness which was supplied by the main stream and later by the branch stream, respectively. 8. If the clay-beds of Dukeo-bed and Songpa-bed is called as being transgressive overlap, by the Eustatic movement after glacial age, the bottom set conglomerate beds shall be called as being regressive overlap at the holocene. This has the closest relationship with the basin formation movement of Seoul besides the Eustatic movement. 9. The silt-beds which is the main component of deposits of flood plain, is regarded as being deposited at the Holocene in the comb ceramic and plain pottery ages. This has the closest relationship with the change of river course and river beds.

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

Mapping of the Righteous Tree Selection for a Given Site Using Digital Terrain Analysis on a Central Temperate Forest (수치지형해석(數値地形解析)에 의한 온대중부림(溫帶中部林)의 적지적수도(適地適樹圖) 작성(作成))

  • Kang, Young-Ho;Jeong, Jin-Hyun;Kim, Young-Kul;Park, Jae-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.241-250
    • /
    • 1997
  • The study was conducted to make a map for selecting righteous tree species for each site by digital terrain analysis. We set an algorithmic value for each tree species' characteristics with distribution pattern analysis, and the soil types were digitized from data indicated on soil map. Mean altitude, slope, aspect and micro-topography were estimated from the digital map for each block which had been calculated by regression equations with altitude. The results obtained from the study could be summarized as follows 1. We could develope a method to select righteous tree species for a given site with concern of soil, forest condition and topographic factors on Muju-Gun in Chonbuk province(2,500ha) by the terrain analysis and multi-variate digital map with a personal computer. 2. The brown forest soils were major soil types for the study area, and 29 tree species were occurred with Pinus densiflora as a dominant species. The differences in site condition and soil properties resulted in site quality differences for each tree species. 3. We tried to figure out the accuracy of a basic program(DTM.BAS) enterprised for this study with comparing the mean altitude and aspect calculated from the topographic terrain analysis map and those from surveyed data. The differences between the values were less than 5% which could be accepted as a statistically allowable value for altitude, as well as the values for aspect showed no differences between both the mean altitude and aspect. The result may indicate that the program can be used further in efficiency. 4. From the righteous-site selection map, the 2nd group(R, $B_1$) took the largest area with 46% followed by non-forest area (L) with 23%, the 5th group with 7% and the 4th group with 5%, respectively. The other groups occupied less than 6%. 5. We suggested four types of management tools by silvicultural tree species with considering soil type and topographic conditions.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

Forest Vegetation of Mt. Baek-Hwa -A Phytosociological Study- (백화산(白華山) 삼림식생(森林植生) -식물사회학적(植物社會學的) 연구(硏究)-)

  • Cho, Hyun Je;Lee, Youn Won;Lee, Dong Sub;Hong, Sung Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.42-53
    • /
    • 1991
  • 1. The forest vegetation of the Mt. Baek-Hwa situated in the northwestern Kyungsangpookdo of Korea, on $36^{\circ}16^{\prime}00^{{\prime}{\prime}}{\sim}36^{\circ}19^{\prime}20^{{\prime}{\prime}}N$ and 127 53'20"~127 56'30"E was studied by the method of Zurich-Montpellier School. In the present time, the original vegetation have almost been dominated by substitutional communities such as secondary forests of Pinus, Quercus, Zelkova, Acer or Fraxinus and Pinus rzgida plantations. Some secondary forests developing along the ravine and in northwestern part of slope are, however, maintained in natural condition, and contain some species of the original climax vegetation. They are classified as follows : I. Quercus mongolica-Fraxinus siebol diana community(Mountain forests), I-A. Acer pseudo-sieboldianum -Carex okamotoi group, I-B. Pinus densiflora group, I-B-a. Typical subgroup, I-B-b. Rhododendron schlippenbachii subgroup, II. Fraxinus rhynclzophylla-Acer mono community(Valley Forests), II-A. Acer pseudo-sieboldianum group, II-B. Zelkova serrata group, II-B-a. Typical subgroup, II-B-b. Lindera erythrocarpa subgroup, II-C. Querczrs serrata-Platycarya strobilacea group, II-C-a. Typical subgroup, II-C-b. Lindera erythrocarpa subgroup. 2. Judging from the coincidence method, the structure and distribution of the forest communities was more related to topography than altitude. 3. Considering the actual vegetation, relict species, occurrence of natural seedlings and saplings, climate, successional trends of trees and topographic or edaphic climax conditions, it seems that potential natural vegetation of the area mainly composed of Quercus mongolica, Carpinus laxiflora, Zelkova serrata, Fraxinus rhynchophylla. 4. The flora of the vascular plants collected from this area consists of 108 families, 371 genera, 613 species, 2 subspecies, 88 varieties, 6 forms and 709 taxa in total.

  • PDF

The Analysis of Vegetation-Environment Relationship of the Taxus cuspidata Forests by TWINSPAN and DCCA (TWINSPAN 및 DCCA에 의한 한반도(韓半島) 주목림(林)의 군락(群落)과 환경(環境)의 상관관계(相關關係) 분석(分析))

  • Shin, Hyun Chul;Lee, Kang Young;Song, Ho Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.535-542
    • /
    • 1998
  • This study was carried out for the purpose of supplying the basic data for artificial forestation, natural regeneration and ecological conservation etc., and obtaining information on alpine vegetation, by establishing vegetation units on the basis of phytosociological classification of community and studying growth pattern on the basis of species composition, hierarchy structure and population dynamics, for Taxes cuspidata naturally growing at the alpine districts in Korea. The importance value of Taxus cuspidata by districts mostly showed above 100 in the upper story but at Mt. Chiri and Mt. Hanra communities its value was comparatively low. In the middle story it showed lower value than that of upper story and not quite showed at Mt. Chiri. Taxus cuspidata communities in the lower story were only in Mt. Hanra, Mt. Odae and Mt. Sobaek, and their importance values were about 10 which were relatively low values. The communities were classified into five groups as Taxus cuspidata-Males baccata var. mandshurica, Taxus cuspidata-Abies nephrolepis, Taxus cuspidata-Abies koreana, Taxus cuspidata-Acer mono and Taxus cuspidata-Euonymus quelpaertensis by TWINSPAN analysis. Taxus cuspidata-Abies koreana community was distributed at the northern aspect of the mountain ridges and at higher elevation than other communities and distributed. Taxus cuspidata-Acer mono community was relatively low than the others and distributed at the hillsides of mountain. And Taxus cuspidata-Euonymus quelpaertensis communities were distributed at the relatively high elevation and northern and eastern aspect of the mountain tap, and Taxus cuspidata-Malus baccata var. mandshurica communities were distributed at the medium elevation, and southern and eastern aspect of the mountain ridge. In the relation between communities and environmental factors, it was correlated with aspect, elevation and topography at the first axis, and elevation, slope at the second axis.

  • PDF

Analysis Actual Conditions of Arid Progress and Prevention Management of Hwaeom Wetland in Yangsansi (양산시 화엄늪의 산지화 진행실태 및 예방관리 방안)

  • Lee, Soo-Dong;Kim, Sun-Hee;Kim, Ji-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.498-511
    • /
    • 2012
  • Mountainous wetland have many species such as II grade endangered species of wild flora and fauna(Drosera rotundifolia) and environmental indicator species(Utricularia racemosa, Habenaria linearifolia, Parnassia palustris, Molinia japonica, etc.). Accordingly, the mountainous wetlands is very important. However, most mountainous wetlands will disappear by natural or artificial aridness processes. Thus, it needs to manage mountainous wetland for protecting from aridness. This study has found out the wetland status of the environmental ecology and aridness processes moreover, it has suggested ways of improving wetland conservation plan and wetland aridness management plan. According to the results of topography structure survey, Hwaeom wetland's altitude is ranged within 750~810m(87.4%), and slope is less than $10^{\circ}$. There was ideally suited mountainous wetland. However, the water supply(1.6 meters depth and 0.8 meters wide) was built on under the wetland. For that reason, there was concerned about the aridness processes by sweeping away peat layer and dropping the water level. The distribution area of hygrophyte was narrowed to 6.7% whereas, woody plants and xerophytic plants was achieved a dominant position. If it leaves the situation as it is, the mountainous wetland will be developed next succession as forest ecosystem. Therefore, in order to sustain the mountainous wetland from aridness, it is set to the base direction of conservation and management as main schemes. Moreover, we have suggested that setting the vegetation conservation and management area which considering a ecological vegetation characteristics, managing the ecotone vegetation, setting the buffer zone for protection of ecological core areas, protecting the mountainous wetland indicator species and designating the management vegetation. In conclusion, in order to sustain and maintain a soundly wetland ecosystem, it needs to several management of wetlands damage factors. 1) suppression of the excessive groundwater to basin, 2) stabilization of wetland via hydrologic storage, 3) suppression of changing and transforming wetland into forest by succession via management of xerophytic plants.

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

A Survey on the Soil Environments of Alpine Vegetable Housing in Honam Area (호남지역(湖南地域) 고냉채소단지(高冷菜蔬團地)의 토양환경연구(土壤環境硏究))

  • Yoo, Chul-Hyun;Cho, Guk-Hyun;Choi, Jeong-Weon;Park, Keon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.246-253
    • /
    • 1988
  • This survey was carried out to obtain the basic information for the stable high yield of income-crops. Cropping systems, soil morphological and chemical properties were investigated. The obtained results were summarized as follows: 1. In Jinan and Jangsu, cultivated area of radish was 76.5% and.65.4%, respecitively, but in Unbong Chinese Cabbage, 71.1%, by second Crop. 2. In topographycal distribution, the mountain foot slope area in Jinan, Jangsu and Unbong was 69, 77 and 85%, respectively. In the distribution of elevation, semi-Alpine region in Jinan and Unbong was 85 and 69%, respectively, but Alpine region in Jangsu was 62%, of cultivated area. 3. Ploughing depth was 0 to 10 cm in Jinan and Jangsu, and 11 to 15cm, in Unbong. Gravel content class was 4th class in Jinan and 3rd class in Jangsu and Unbong. 4. For the distribution of soil types, normal upland came to 69.2% in Unbong, sandy and skeletal upland, 46.1 % and normal and sandy upland, 39 and 38%, respectively, in Jangsu. 5. The uplands soil classified as the 5th class, with improper for adequate cropping were. 6. For the chemical properties according to topography available phosphate $(-0.344^*)$, Ca $(-0.398^*)$, K $(-0.485^{**})$ and CEC $(-0.325^{**})$ showed the negative significancy with the elevation. 7. Among the variations of chemical properties by continuous cropping, the soil pH $(-0.491^{**})$ and the content of organic matter $(-0.434^{**})$, Ca $(-0.705^{**})$, CEC $(-0.512^{**})$, total nitrogen $(-0.559^{**})$ showed the high negative correlations, while the contents of available phosphate $(0.671^{**})$ and K $(0.543^{**})$ showed the high positive correlations, with the number of years of continuous cropping.

  • PDF