• 제목/요약/키워드: slope stabilization

검색결과 118건 처리시간 0.028초

녹화공법에 따른 고속도로 암반비탈면의 식생 특성 분석 (An analysis on vegetation characteristics of the rocky slopes in expressway according to the type of greening works)

  • 이수호;전기성;이제만;김경훈;김동엽;임상준;박영대
    • 한국환경복원기술학회지
    • /
    • 제26권1호
    • /
    • pp.1-16
    • /
    • 2023
  • The current study aims to analyze the vegetation characteristics of the rocky slopes in expressway applied by different types of greening work. A field survey on the current status of vegetation were conducted in 50 rock slopes along 13 expressways in two years, 2020 to 2021. Specifically, the type of implemented greening and slope stabilization work, the soil properties, the vegetation coverage, and the emerged species were investigated on a every single slope. As the result of the implemented work types, the soil-media hydroseeding and the gabion work appeared to be the most implemented greening and slope stabilization work, respectively. As a result of the vegetation survey, 126 classification groups (42 families, 93 genera and 126 species) were identified in total and it was observed 26 IAP species and 5 invasive species were growing. The longer the time after greening work, the more frequent appearance of IAP species were observed. Woody species such as Robinia pseudoacacia and Lespedeza bicolo, and perennial herbs such as Artemisia princeps, Erigeron annuus, and Festuca arundinacea were appeared with high frequencies at the rocky slopes in expressway. It was also observed Pinus densiflora, Quercus dentata, Rubus crataegifolius and Miscanthus sinensis which had invaded from the adjacent forests naturally, and the largest number of species were invaded between 5~10 years usually after greening work in this study.

휨저항을 고려한 쏘일네일보강사면의 해석에 관한 연구 (Study of the Soilnail-Slope Design Method Considering Bending Resistance of Soilnail)

  • 주용선;김낙경;김성규;박종식
    • 대한토목학회논문집
    • /
    • 제28권6C호
    • /
    • pp.331-338
    • /
    • 2008
  • 기존 쏘일네일사면 설계법들은 보강재, 주변지반 또는 이들의 상호작용에 대하여 각기 다른 가정들을 적용하고 있다. 다수의 방법에서는 단순하게 쏘일네일의 인장력만을 고려하여 이를 외력으로 적용하여 안정해석을 하고 있다. 하지만 쏘일네일사면은 사면을 구성하는 지반에 비하여 상대적으로 큰 휨저항성을 가지므로 쏘일네일의 휨강성을 고려한 안정해석법이 보다 현실적이고 공학적인 설계이다. 본 논문에서는 쏘일네일사면 설계시 쏘일네일의 휨저항성을 고려하며 이때 지반의 극한수평지지력에 따른 변화를 확인하고 이를 이용하여 수정된 FHWA 쏘일네일사면 설계법을 제안한다.

쌍극자(Dipole-Dipole)탐사를 활용한 터널붕괴사면 조사 및 대책방안 제시 연구 (Study of Stability Analysis and Countermeasure Tunnel Portal Failure using Dipole-Dipole Investigation)

  • 백용;이종현;구호본;배규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.493-498
    • /
    • 2003
  • In case of slope failure by planted protection is constructed on the slope according to of the choice trend of a recently environmental-friendly countermeasure, there has a limitation about diagnosis and preparation of measure. Also, collapse of tunnel pithead department slope has maximum in construction and countermeasure method of construction choice unlike cut-slope. In this study, analyzed inside circumstance of slope using geophysical exploration for stability analysis and countermeasure inside presentation of tunnel pithead department slope which collapse happens. geophysical exploration used dipole(Dipole-Dipole) method that is based to distribution principle does specific resistance, goes side by side with on-the-spot observation and draws base strength parameter and executed stability analysis, and presented stabilization countermeasure inside of collapse slope on this. I wish to conduce in development and research for use technical development of geophysical exploration technique hereafter by executing geophysical exploration in road collapse spot applying through this study.

  • PDF

Analysis of factors affecting vegetation cover for stabilization of granite weathered soil forest road cut slopes

  • Seong-Man Kim;Sung-Min Choi;Ye Jun Choe;Yun-Jin Shim;Joon-Woo Lee
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.809-819
    • /
    • 2022
  • This study was conducted to improve the stability of cut slopes of forest roads in granitic weathered soil areas. The study area is a national forest road (road length 28.48 km) in Pyeongchang-gun, Gangwon-do. After data collection, a statistical analysis was performed using IBM SPSS (Ver. 26.0). First, the correlation analysis showed that structure, slope position, soil erosion, slope, and aspect (N, S) were correlated with vegetation coverage (p < 0.05). Elapsed years, slope distance, and aspect (E, W) were found to have no correlation with vegetation coverage. (p > 0.05) Second, one-way ANOVA and Kruskal-Wallis test results showed that vegetation coverage was worse when the slope was located at the top or the middle of the slope than at the bottom of the slope. In addition, the site with sheathing and gabions showed good vegetation coverage when compared with the site without structures. In the case of soil erosion, areas with severe damage and moderate damage showed worse vegetation coverage. Therefore, it is necessary to strengthen the slope angle of the cut soil of the granitic weathered soil area from 1 : 0.5 - 1.2 to 1 : 0.8 - 1.5. In addition, structures such as sheathing and gabions should be installed on granitic weathered land.

Shallow Landslide Assessment Considering the Influence of Vegetation Cover

  • Viet, Tran The;Lee, Giha;Kim, Minseok
    • 한국지반환경공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.17-31
    • /
    • 2016
  • Many researchers have evaluated the influence of vegetation cover on slope stability. However, due to the extensive variety of site conditions and vegetation types, different studies have often provided inconsistent results, especially when evaluating in different regions. Therefore, additional studies need to be conducted to identify the positive impacts of vegetation cover for slope stabilization. This study used the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to predict the occurrence of landslides in a watershed in Jinbu-Myeon, Pyeongchang-gun, Korea. The influence of vegetation cover was assessed by spatially and temporally comparing the predicted landslides corresponding to multiple trials of cohesion values (which include the role of root cohesion) and real observed landslide scars to back-calculate the contribution of vegetation cover to slope stabilization. The lower bound of cohesion was defined based on the fact that there are no unstable cells in the raster stability map at initial conditions, and the modified success rate was used to evaluate the model performance. In the next step, the most reliable value representing the contribution of vegetation cover in the study area was applied for landslide assessment. The analyzed results showed that the role of vegetation cover could be replaced by increasing the soil cohesion by 3.8 kPa. Without considering the influence of vegetation cover, a large area of the studied watershed is unconditionally unstable in the initial condition. However, when tree root cohesion is taken into account, the model produces more realistic results with about 76.7% of observed unstable cells and 78.6% of observed stable cells being well predicted.

진화 신경망을 이용한 도립진자 시스템의 안정화 제어기에 관한 연구 (A Study on the Stabilization Control of IP System Using Evolving Neural Network)

  • 박영식;이준탁;심영진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.383-394
    • /
    • 2001
  • The stabilization control of inverted pendulum (IP) system is difficult because of its nonlinearity and structural unstability. In this paper, an Evolving Neural Network Controller (ENNC) without Error Back Propagation (EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC)are compared with the one of conventional optimal controller and the conventional evolving neural network controller (CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

진화 신경회로망 제어기를 이용한 도립진자 시스템의 안정화 제어에 관한 연구 (A Study on Stabilization Control of Inverted Pendulum System using Evolving Neural Network Controller)

  • 김민성;정종원;성상규;박현철;심영진;이준탁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.243-248
    • /
    • 2001
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Thus, in this paper, an Evolving Neural Network Controller(ENNC) without Error Back Propagation(EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC) are compared with the ones of conventional optimal controller and the conventional evolving neural network controller(CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

침투가 고려된 토사사면파괴의 수치해석 (Numerical Analysis of Seepage Induced Earthern Slope Failures)

  • 서영교
    • 한국지반공학회논문집
    • /
    • 제24권9호
    • /
    • pp.5-11
    • /
    • 2008
  • 침투에 의한 토사사면의 붕괴는 기상학적인 현상과 더불어 많은 양의 지하수의 유입에 의하여 발생한다. 토사사면 속에 존재하는 지하수의 흐름은 심각한 재산 및 인명손실의 잠재적인 요인으로 작용한다. 이러한 침투에 의한 토사사면의 안정성 문제는 지반공학에서 중요한 문제로 인식되어져 오고 있다. 본 연구는 기존의 유체 및 고체의 상호 작용에 대한 수치모델링 기법을 이용하여 침투에 의한 토사사면붕괴의 이해 및 이를 예측하기 위하여 수행되었다. 본 연구는 지반공학에서 중요히 다루는 사면안정화기법 연구에 효과적인 기술적 기여에 중점이 있다.

The behaviour of a strip footing resting on geosynthetics-reinforced slopes

  • Hamed Yazdani;Mehdi Ashtiani
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.623-636
    • /
    • 2023
  • This study utilized small-scale physical model tests to investigate the impact of different types of geosynthetics, including geocell, planar geotextile, and wraparound geotextile, on the behaviour of strip footings placed on 0.8 m thick soil fills and backfills with a slope angle of 70°. Bearing capacity and settlement of the footing and failure mechanisms are discussed and evaluated. The results revealed that the bearing capacity of footings situated on both unreinforced and reinforced slopes increased with a greater embedment depth of the footing. For settlement ratios below 4%, the geocell reinforcement exhibited significantly higher stiffness, carrying greater loads and experiencing less settlement compared to the planar and wraparound geotextile reinforcements. However, the performance of geocell reinforcement was influenced by the number and length of the geocell layers. Increasing the geocell back length ratio from 0.44 to 0.84 significantly improved the bearing capacity of the footing located at the crest of the reinforced slope. Adequate reinforcement length, particularly for geocell, enhanced the bearing pressure of the footing and increased the stiffness of the slope, resulting in reduced deflections. Increasing the length of reinforcement also led to improved performance of the footing located on wraparound geotextile reinforced slopes. In all reinforcement cases, reducing the vertical spacing between reinforcement layers from 100 mm to 75 mm allowed the slope to withstand much greater loads.