• Title/Summary/Keyword: slope stabilization

Search Result 118, Processing Time 0.028 seconds

Analysis for Mechanical Behavior of GFRP Rock Bolt for Permanent Support of Tunnel (영구 터널지보재로서의 활용을 위한 GFRP 록볼트의 역학적 거동 분석)

  • Sim, Jong-Sung;Kang, Tae-Sung;Lee, Yong-Taek;Kim, Hyun-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.124-131
    • /
    • 2010
  • Rock Bolt generally utilizes deformed reinforcing bar welded from structural steel of which strength is higher than required for making advantageous use of the support function of ground. In the condition with highly corrosive underground water, however, problem frequently occurs on tunnel and slope stabilization in terms of repair, rehabilitation and maintenance issues due to the destruction of Rock Bolt by corrosion of steel. A structural performance evaluation for GFRP Rock Bolt was conducted for the purpose of resolving the foregoing problem and at the same time developing a permanently-usable support material. This study intended to evaluate the safety factor of GFRP Rock Bolt by implementing the slope stability interpretation via structural analysis on the basis of its structural characteristics derived from both tensile force function test and shear force function test. It is judged based on the results that GFRP Rock Bolt would secure sufficient ground stability as an alternative material for existing Steel Rock Bolt.

Habitat use of reintroduced Long-tailed Gorals (Naemorhedus caudatus) in Woraksan (Mt.) National Park in Korea

  • Cho, Chea-Un;Kim, Kyu-Cheol;Kwon, Gu-Hui;Kim, Ki-Yoon;Lee, Bae-Keun;Son, Jang-Ilk
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.184-191
    • /
    • 2015
  • This study aimed to analyze characteristics of the seasonal habitat use of reintroduced Long-tailed Gorals (n=7) in Woraksan (mountain) National Park. We collected 10,721 goral coordinates in Woraksan (mountain) National Park via transmitters, and analyzed habitat use (e.g., aspect, distance from stream and road) from November 2006 to January 2013. Aspect use was southwest (22.6 %), and seasonal aspect use had a southwestern slope (in the spring, summer, and autumn). A northwestern aspect was detected in winter, but slope of $30^{\circ}{\sim}35^{\circ}$ (19.0 %) was used regardless of the season and mean elevation use was 500 m. Moreover, seasonal use was higher in the summer and lower in the winter and spring. The distance from the stream was mainly 50 m in 17.2 %, except in the winter (distance of 300 m), and it was within 50 m in the spring, summer, and autumn. The distance from the road was 100 m in 25.7 %, and seasonal use was within 100 m except for the winter. Thus, we examined significant differences in the habitat use of reintroduced gorals in Woraksan (mountain), and provide elementary data for habitat stabilization of Woraksan (mountain) National Park where goral restoration has advanced.

Slope Failure Along the Weathered And Mobilized Foliation Plane : Studies for Causes of the Failure and the Supporting Methodologies (풍화된 엽리면을 따라 붕괴된 대절토 사면의 붕괴요인 분석과 보강방안에 대한 연구)

  • Hwang, Sang-Gi;Kim, Young-Muk;Ji, In-Taeg;Jeon, Byoung-Choo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.775-784
    • /
    • 2009
  • Weathered foliation could act as a critical failure plane because this type of plane tend to have low roughness and long extensions. A big constructed slope at $\bigcirc\bigcirc$ road construction site was failed due to the block movement along a fault zone which is parallel to foliation. Tectonic activity reactivated a fault zone parallel to foliation, and the fault clay within the shear zone metamorphosed retrogressively to chrolite. The failed block moved when the block weigh lost the balancing with the resisting force of the retrogressively metamorphosed chrolite. Evaluating the three dimensional distribution of the foliation was critical for establishing a plan for the stabilization of the slope. For this purpose, 10 boreholes were drilled as a lattice distribution, and the BIPS analyses are performed at each boreholes. The fractures measured in the boreholes are projected into 15 cross sections and their distributions are analysed, using Fracjection software. The projection analyse show that the strike of the foliation gets dipper towards left side of the slope. This geometry indicates that there are more failure block geometry at left side of the slope. Potential failure planes are searched using the projection method, and these information are provided for further support design.

  • PDF

A training of SMA wire for stabilization of two-way behaviors and actuator application (형상기억합금 와이어의 거동 안정화를 위한 트레이닝과 작동기 응용)

  • Kim, Sang-Haun;Yang, Sung-Pil;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.924-927
    • /
    • 2007
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined. Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amount of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

The Effect of Pilates Exercise for Lumbar Stabilization focused on Body Shape Improvement and Pain Relief of Senior Women with Chronic Back Pain (요부안정화 중심의 필라테스 운동이 만성요통을 가진 여성노인의 체형 및 통증에 미치는 영향)

  • Boon-Hong Yeon;Eul-Seob An
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.95-102
    • /
    • 2023
  • The purpose of this study is to figure out the effect of 12 weeks pilates program for body shape improvement and lumbar stabilization of senior women with chronic back pain and to provide data for developing excercise program which is appropriate for senior women to make aging delayed and to have more physical activity domain by inquiring into their pain reducing. The subjects of this study were 16 senior women with chronic back pain which were classified into two group with experimental group(n=8) and control group(n=8) by applying simple random sampling after conducting Visual Analogue Scale(VAS). Their motion range of pain was from 3 centimeters to 5 centimeters. Pilates excercise for lumbar stabilization in this study was originated the previous literature of Lee et al(2011) and the excercise was modified in the form of pilates. The program in the study was performed under the guidance of a professional pilates trainer. The results are as follows. Firstly, the experimental group showed positive improvement in making vertebra slope but the control group showed pain increased. Secondly, the lumbar pain decreased in the experimental group but it increased in the control group. As a result, the pilates program for lumbar stabilization can be considered as a program for pain relief and body shape improvement of senior women with chronic back pain.

Development of Green Rehabilitation Material for Rock and Abandoned Mine Debris Slopes (폐광산 암반 및 폐석사면에 적합한 친환경 식생복원 소재 개발에 대한 연구)

  • Jung, Mun-Ho;Ryu, Jong-Heum;Kim, Tae-Heok;Lee, Hak-Joo;Choo, Chang-Oh;Shin, Youn-Soo;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • The aim of this study is to develop eco-friendly, fundamental technology for vegetative restoration of barren lands using green rehabilitation material, for the stabilization of abandoned mine debris slopes and depository slopes composed of rock fragments. It is expected that such methods would help to improve the negative view of artificial slopes that remain following mining activity, while also contributing to slope stabilization and prevention of the loss of rock fragments and the dispersion of tailings. We tested the tensile strength and tear strength of various materials, including commonly used natural coir material, natural fibers, and synthetic textile materials with enhanced durability. In conclusion, there is the possibility that natural coir can be used as an eco-friendly material in vegetation restoration, while its durability in natural conditions can be improved by controlling the degree of knot convolution and by antibacterial treatment against biodegradation.

Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles (억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석)

  • Son, Su-Won;Im, Jong-Chul;Seo, Min-Su;Hong, Seok-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In urban areas, structures are installed deep underground in the lower part of the structure to utilize space. Therefore, a retaining wall is used to prevent earth pressure from the ground when constructing a structure. Due to the development of construction technology, retaining wall applied to excavation work are used to prevent danger such as falling rocks and landslides in temporary facilities when construction or retaining walls are installed. In general, the application of a retaining wall to a temporary facility during the embankment construction is the case of expanding an existing roads or railways. Therefore, it is necessary to study the retaining wall applied to the embankment construction such as the double-track site of the high-speed railway. In this study, two types of common one row H-pile retaining wall and two types of IER retaining wall were analyzed, and the stability of the retaining wall applied to the construction of double-track of the high-speed railway was analyzed. The earth retaining wall is a construction method that combines forced pile applied to the stabilization of the slope with the wall of the earth retaining wall. As a result of the analysis, the IER retaining wall had maximum lateral displacement of 19.0% compared to the type with H-plie installed only in the front while dynamic load was applied. In addition, the slower the speed of high-speed railway, the more displacement occurred, and the results show that more caution is needed when designing the ground in low-speed sections.

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.

Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine (대규모 노천 석탄광산의 사면 안정화를 위한 지하수 유동 체계 분석)

  • Ryu, D.W.;Kim, H.M.;Oh, J.H.;Sunwoo, C.;Jung, Y.B.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.248-260
    • /
    • 2009
  • With regard to oversea mineral resources development, recent trend has been changed from a simple capital investment to a direct development of the resources. In relation to the stability of a slope in large open-pit coal mine, groundwater system was investigated and the validity of horizontal drainage hole was evaluated in Pasir coal mine, Indonesia. In this work, various field tests were carried out for a characterization of groundwater system, which included in-situ permeability measurement, tracer test and monitoring of groundwater levels. Especially, the influence of SM river on the characteristics of the groundwater flow system was mainly inspected. For the permeability measurement, Guelph permeameter was employed, and was found that sandstone was more permeable than mudstone and coal seam. From a comparison of lithological structure and the results of groundwater level monitoring, sandstone and thin coal seam with fractures were found to be a main channel for groundwater flow. In the results of tracer tests, the effect of SM river on the groundwater system depends on the geological structure of its base. To identify the effect of horizontal drainage holes, 2-D groundwater modeling was performed. Four different cases were tested, which are different from the length of drainage hole and the existence of pond on top of the slope. To enhance the drainage effect and slope stability, the drainage hole should be drilled to the depth of coal seam layer, which provides a main pathway of groundwater flow and embedded by sandstone. For this purpose, correct identification of surrounding geology should be preceded.

Photo-Induced Scalar Phenomena according to Thickness Dependence of Chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ Thin Film (칼코게나이트 $As_{40}Ge_{10}Se_{15}S_{35}$ 박막에서 두께에 따른 광유기 스칼라 현상)

  • 이현용;박수호;정홍배
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.467-472
    • /
    • 1997
  • In this study, we investigated the thickness dependence of thermal bleaching(TB) effect as well as photo-induced scalar phenomena, such as photodrakening(PD) effect and photorefraction(PR) change, in chalcogenide A $s_{40}$ G $e_{10}$S $e_{15}$ $S_{35}$ thin films. We found that when these films were exposed for 15 minutes using blue-pass filtered Hg lamp(~4300$\AA$) after annealing for 30 minutes around the glass transition temperature Tg(20$0^{\circ}C$), the refractive index change ($\Delta$n) was varied up to 0.02~0.46 according to each thickness condition and the optical energy gap ($\Delta$ $E_{op}$ ) was shifted to a longer wavelength of approximately 0.67eV, especially for 1000$\AA$-thickness. Also, the TB PD effects have been understood by the results related to optical absorption characteristics. The TB effect could be estimated as increasing the stabilization of amorphous chalcogenide films since absorption slope of extended regions(U) was not changed by annealing. On the other hand, the PD effect could be understood as due to the enhancement of disorder since U and the slope of Urbachs tail(1/F) around an absorption edge were decreased by exposing.ing.n edge were decreased by exposing.

  • PDF