• Title/Summary/Keyword: slope monitoring

Search Result 386, Processing Time 0.029 seconds

Extracting Information on Road Slope Monitoring by Digital Photogrammetric Processing Techniques (디지털 사진측량 처리기법에 의한 도로사면의 모니터링 정보 추출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Ho-Chan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.55-64
    • /
    • 2005
  • This study demonstrates the experiment based on digital photogrammetric processing for acquiring data related to slope monitoring. To apply dose-range digital photos for monitoring road rock slopes, digital elevation models and digital orthophotos were generated and 3D modelling was conducted for the visualization on a digital photogrammetric workstation. These digital photogrammetric products can be utilized as objective and scientific data not only for surveying and analyzing the shape and characteristics of the slopes but also for extracting various engineering data for building the database of the slopes and making the safety diagnosis of the slopes.

  • PDF

Development of a Prototype System for Slope Failure Monitoring Based on USN Technology (USN 기술을 이용한 사면붕괴모니터링 시범시스템 개발)

  • Han, Jae-Goo;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.316-321
    • /
    • 2007
  • The casualties due to slope failures such as landslide, rock fall, debris flow etc. are about 24% in total casualties caused by natural disasters for the last 10 years. And these slope failures are focused in the season in which typhoon and torrential rain take place. Not much attention, however, have been put into landslide mitigation research. Meanwhile, USN(Ubiquitous Sensor Network) forms the self-organization network, and transfers the information among sensor nodes that have computing technology ability. Accordingly, USN is embossed a social point technology. The objective of this paper is to develop a prototype system for slope failure monitoring using USN technology. For this we develop module that collects and change slope movement data measured by two tiltermeter and a tension wire, store transferred data in database. Also we develop application program that can easily analyze the data. We apply the prototype system to a test site at KICT for testing and analyzing the system's performance.

  • PDF

A Study on the Cut-slope Maintenance according to Anchor Tension Force (앵커 긴장력 변화에 따른 비탈면 유지관리 연구)

  • Park, Byungsuk;Kim, Wooseok;Hwang, Sungpil;Kwon, Oil
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.673-682
    • /
    • 2020
  • The ground shear force at the expected failure surface and resistance force due to reinforced anchor can act as important factors according to a failure type from the stability viewpoint at a slope. Furthermore, the anchor's axial force may vary at an anchor-reinforced slope due to ground weathering, settlement, and corrosion in the incompletely anti-corrosion treated steel wire strand at a ground where the bearing plate is installed. However, in case that the resistance force of the anchor is locally lost due to the variation of the anchor's axial force, the resistance force may not play the role so that the external force tends to be transferred to the surrounding anchors, causing an increase in the tensile force in the surrounding anchors. Accordingly, a stability problem at the entire slope may occur, which requires much attention. Thus, this study proposed a method to monitor a variation trend of the tensile force of anchors installed at a slope and infer the external stability at the entire slope considering the monitoring result.

Monitoring the Symptoms of Landslide Using the Non Prism Totalstation (무프리즘 토탈스테이션을 이용한 산사태 징후 모니터링)

  • Yang, In-Tae;Park, Jae-Kook;Park, Gun;Kim, Jun-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.409-412
    • /
    • 2007
  • To minimize damages caused by landslides due to severe rain falls and storms during the rainy season every year, it is necessary to carry out research to monitor the symptoms of landslide in advance and prevent them. If proper actions ate taken in advance by monitoring the symptoms of landslide, personal and property damages caused by landslides can be prevented or minimized. This study tries to measure the movement of model slopes after causing displacement to each model slope using no prism Total Station and examine the applicability of Total Station by displacement through the analysis of the data.

  • PDF

A Study on Construction and Applicability on of Smart Pole Measuring System for Monitoring Steep Slope Sites (급경사지 모니터링을 위한 스마트폴 계측시스템 구축 및 적용성 연구)

  • Lee, Jin-Duk;Chang, Ki-Tae;Bhang, Kon-Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Smart Pole Measurement System was constructed with not only the core sensors of a GNSS receiver, a TRS sensor and a soil moisture sensor but supplementary installation of power supply and radio communication for monitoring steep slope sites. Also a data processing software for displacement extraction and visualization was developed. Smart Pole Measurement sensor is composed of a GNSS antenna at the top of the pole, a TRS sensor and a gyro sensor vertical below right of the antenna and a soil moisture sensor at the bottom of the pole. The sensor combination extracts not only ground combination in real time but transltion, slide, settlement and soil moisture content. This measuring/monitoring system which cosists of data receiving part, data collection/transfer part and data processing part was built to exercise their functions and then test measuring/monitoring was conducted by introducing artificial displacement and the results were analyzed to evaluate field applicability.

Remote monitoring technique for geotechnical structures using acoustic emission (미소파괴음을 이용한 지반구조물 원격계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Eui-Seob;Park, Chan;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.946-956
    • /
    • 2008
  • Acoustic emission(AE) is low-energy seismic event associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. Rock slopes are usually large in scale and there are many discontinuities in rock mass. AE waves are strongly attenuated when they propagate through joints. Thus we should resolve the attenuation problem to monitor large volume. In this study, we developed waveguide which is composed of two different materials, cement mortar and stainless steel rod. And several laboratory tests on developed waveguide are performed to obtain generalized AE parameters to predict the failure stage in rock slope. Comparing field data with experimental data in laboratory tests, failure stage of rock slope can be evaluated. To verify and optimize the developed monitoring method, we are now carrying out the field application at a rock slope.

  • PDF

Application of Terrestrial LiDAR to Monitor Unstable Blocks in Rock Slope (암반사면 위험블록 모니터링을 위한 지상 LiDAR의 활용)

  • Song, Young-Suk;Lee, Choon-Oh;Oh, Hyun-Joo;Pak, Jun-Hou
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.251-264
    • /
    • 2019
  • The displacement monitoring of unstable block at the rock slope located in the Cheonbuldong valley of Seoraksan National Park was carried out using Terrestrial LiDAR. The rock slopes around Guimyeonam and Oryeon waterfall where rockfall has occurred or is expected to occur are selected as the monitoring section. The displacement monitoring of unstable block at the rock slope in the selected area was performed 5 times for about 7 months using Terrestrial LiDAR. As a result of analyzing the displacement based on the Terrestrial LiDAR scanning, the error of displacement was highly influenced by the interpolation of the obstruction section and the difference of plants growth. To minimize the external influences causing the error, the displacement of unstable block should be detected at the real scanning point. As the result of analyzing the displacement of unstable rock at the rock slope using the Terrestrial LiDAR data, the amount of displacement was very small. Because the amount of displacement was less than the range of error, it was difficult to judge the actual displacement occurred. Meanwhile, it is important to select a section without vegetation to monitor the precise displacement of unstable rock at the rock slope using Terrestrial LiDAR. Also, the PointCloud removal and the mesh model analysis in a vegetation section were the most important work to secure reliability of data.

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.

A Study on the Mixing Ratio of Food Waste on Slope Re-vegetation Base Materials (음식쓰레기를 활용한 비탈면 녹화기술의 식생기반재 배합비율에 관한 연구)

  • Cho, Dong-Gil;Jeon, Gi-Seong;Shim, Yun-Jin;Kim, Duck-Ho;Do, Jong-Nam;Park, Mi-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.215-226
    • /
    • 2015
  • This study introduced food waste into re-vegetation base materials for surface loss recovery of carry-away highway cut slope. The object of this study is to derive the mixing ratio of food waste by conducting a test installation, monitoring, analysis and evaluation for recovery of carry-away highway cut slope. The following items were investigated and analyzed each experimental zone to draw mixing ratio of re-vegetation base materials and food waste : the physical and chemical properties of the vegetation base materials, soil-hardness, soil-humidity, left out and the collapsed point, established number of trees, species richness of grass species and tree species, coverage, pest status, and invasion of disturbance species. The re-vegetation method was evaluated by each experiment zone which has different mixing ratio. As a result, experiment zone A was rated 45 points out of 60 rating points as the best re-vegetation method. However, this study result has been derived from one construction and short-term monitoring. In order to derive the suitable and dependable mixing ratio, conducting an objective re-vegetation method evaluation and long-term experiment and monitoring is required.

The Mixing Ratio of Wood Waste on Slope Revegetation base Materials (임목폐기물을 활용한 비탈면 녹화용 식생기반재 배합비율)

  • Park, Yeon-Jae;Jeon, Gi-Seong;Cho, Dong-Gil;Shim, Yun-Jin;Do, Jong-Nam;Park, Mi-Young;Lee, Jai-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.4
    • /
    • pp.45-59
    • /
    • 2016
  • This study introduced wood waste into revegetation base materials for recovery of highway cut slope. The object of this study is to derive the mixing ratio of wood waste, kaoline and silica by conducting a test installation, monitoring, analysis and evaluation. The following items were investigated and analyzed each experimental zone to deduce the mixing ratio of wood waste, kaoline and silica on slope revegetation base materials: the physical and chemical properties of the vegetation base materials, soil-hardness, soil-humidity, collapse and eroded spots, established number of trees, existing species of grass and tree species, vegetation coverage ratio, pest status, and invasion of disturbance species. The revegetation method was evaluated in each experiment zone which had different mixing ratios. As a result, experiment zone C scored 47 points out of 60 as the best revegetation method. However, this result has been derived from just one construction and short-term monitoring. In order to derive the suitable and dependable mixing ratio, conducting an objective revegetation method evaluation and long-term experimenting and monitoring is required.