• Title/Summary/Keyword: slip surface

Search Result 487, Processing Time 0.028 seconds

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.

A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations (α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구)

  • Yeri Jung;Jin Ho Kim;Taeil Yi
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan;Wantong Xiang;Debin Wang;Zichen Dou;Xiaocheng Tang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.

Innovation of the Underhand Closed Bench (UCB) Mining Method Utilizing Large-Scale Blasting in Deep Underground Mining (심부 지하광산 개발에서의 대규모 발파를 활용한 Underhand Closed Bench (UCB) 채광 혁신기술)

  • Seogyeong Lee;Se-Wook Oh;Sang-Ho Cho;Junhyeok Park
    • Explosives and Blasting
    • /
    • v.42 no.2
    • /
    • pp.29-41
    • /
    • 2024
  • The increasing demand for metallic minerals due to global growth and the continued exploitation of near-surface minerals requires safe and efficient ways to mine ores present in deep mines. In deep mines, stresses concentrated around the cavity increase, which can lead to problems such as induced seismicity and rockbursts. In addition, the transfer of energy from blasting to deeply located faults can cause fault slip, which can lead to earthquakes, and controlling these events is key to deep mining methods. In this technical report, we will introduce the Underhand Closed Bench (UCB) mining method, which can control possible accidents and increase productivity when mining in deep mines.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

On the Latest Tectonic Environment Around Northern Part of the Yangsan Fault, Korea (양산단층 북부 일대의 최후기 지구조환경에 대해)

  • Ryoo, Chung-Ryul;Kang, Ji-Hoon;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Geologic structures related to the latest event in the evolution around Gyeongsang Basin are mainly associated with the Yangsan Fault. In particular, the structures in the northern part of the Yangsan Fault are mainly observed in the region between Bogyeongsa Temple and Danguri. Such structures are also clustered in the vicinity of the Yangsan Fault, exhibiting similar geometric and kinematic patterns. In general, N-S and NE-SW trending fractures and tectonogeomorphic lineament are mainly eastward dipping reverse faults, such that the blocks in the east of the structures moved west or northwest. The reverse faults are segmented by NW trending fractures that accommodate strike-slip movements. The reverse faults and geomorphotectonic lineaments related to the latest event of deformation in the northern part of the Yangsan Fault show a westward convex patterns. We infer that these structures were initially normal faults that formed during a NW-SE extensional environment and were later reactivated during an E-W compressional one. Such a deformation pattern is also well developed around Pohang-Heunghae area based on the tectonogeomorphic analysis, which appears to be closely related to the Pohang Earthquake (15 Nov. 2017), and its development of the surface rupture and highly damaged zones.

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

Estimation of Long Term Clamping Force of High Strength Bolts By Coating Thickness Parameters of Slip Faying Surfaces (미끄럼 표면 도막두께변수에 따른 고력볼트 장기축력 예측)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • The initial clamping forces of high strength bolts depending on different faying surface conditions drop within 1,000 hours regardless of loading, any other external force or loosening of the nut. This study is focused on an expectation model for relaxation of high strength bolt, which is confined to creep on coated faying surfaces after initial clamping. The range of this experiment is limited to estimate the relaxation of bolted joints coated by inorganic zinc primer. The candidate bolts were dacro-coated tension control bolts. The parameters of coated thickness for the faying surface were 96, 168,and $226{\mu}m$ respectively. From experiments, it exhibited that the logarithmic function for creep strain was derived due to the parameter of coating thickness. By using the creep strain, subsequently the quantitative model for estimating long term relaxation of high strength bolt can be taken with the elapsed time. The experimental results showed that the relaxation after the initial clamping of high strength bolt rose to a much higher range from 10% to 18% due to creep of the coating as the coating thickness was increased. This study showed that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force of high strength bolt.

Oxidation of Organic Compounds Using $TiO_2$ Photocatalytic Membrane Reactors ($TiO_2$ 광촉매 막반응기를 이용한 유기물의 산화)

  • 현상훈;심세진;정연규
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.152-162
    • /
    • 1994
  • The photodegradation efficiency of formic acid on $TiO_2$ photocatalytic membranes was investigated. A new titania membrane reactors for purification of water combining microfiltration with photocatalytic degradation of organic compounds were developed. Titania membrane tubes(average pore size of $0.2\mu m$) were prepared by the slip casting, and porous thin films of $TiO_2$ were formed on the tube surface by the sol-gel process to increase the surface area, and consequently to increase photodegradation efficiency of organic compounds. The UV light with the wavelength of 365 nm was used as a light source for photocatalytic reactions. The photodegradation efficiency of the organic compounds was strongly dependent on the flux of the solution, the microstructure of the membrane (sol pH), and the amount of $O_2$ supplied. The effects of the primary oxidant such as $H_2O_2$ and dopants such as $Nb_2O_5$ on the photodegradation efficiency were also investigated. The results showed that more than 80% of formic acid could be degraded using membrane coated with a $TiO_2$ sol of pH 1.45. The photodegradation efficiency could be improved by about 20% when adding $H_2O_2$ in feed solution or doping $TiO_2$ membranes with $Fe_2O_3$.

  • PDF

Flux Model of One-shaft Rotary Disc UF Module for the Separation of Oil Emulsion (1축 회전판형 UF 모듈의 투과모델 및 Oil Emulsion 분리 특성)

  • 김제우;노수홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.86-95
    • /
    • 1996
  • Rotary disc ultrafiltration module(RDM) was developed for the separation of oil e$$\mu$sions. This module was devised to reduce the gel polarization phenomenon by decoupling the operation pressure and the surface velocity of solution in ultrafiltration(UF) processes. The rotary disc membrane consists of 3mm-thick ABS plate covered with UF membrane (UOP, U.S.A.). When the angular velocity($\omega$) was increased, the pure water flux was slightly decreased due to pressure drop caused by centrifugal force and slip flow at the surface of membrane. The pressure drop was proportional to the square of linear velocity(${\omega}r$). When the angular velocity was changed from 52.36rad/s to 2.62rad/s, the flux decline for 5% cutting oil in one-shaft RDM at $25^{\circ}C$ and 0.1MPa was 30.16%. In the lower concentrations, angular velocity tends to give less effect on the flux. Flux(J; $kg/m^{2} \cdot s$) in a rotating disc module is mainly a function of the bulk concentration($C_{B}$; %), the linear velocity(${\omega}r$; m/s) and the effective transmembrane pressure($\Delta P_{T}$ ; Pa). Using a modified resistance-in-series model, the flux data of cutting oil experiments were fitted to give the following equation.

  • PDF