• Title/Summary/Keyword: slip ratio

Search Result 374, Processing Time 0.033 seconds

An Experimental Study for Reinforcement Effect of Adhesive Stiffeners Depending on the Aspect Ratio of Masonry Wall (조적벽체의 형상비에 따른 접착형 보강재의 보강효과에 관한 실험적 연구)

  • Park, Byung-Tae;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • Unreinforced masonry buildings are vulnerable to lateral forces, such as earthquakes, owing to the nature of the building materials, yet numerous masonry buildings remain in South Korea. Since the majority of the existing masonry buildings were constructed more than 20 years ago, it is necessary to develop economical reinforcement methods for disaster reduction. In this study, external reinforcement of masonry walls using adhesive stiffeners was proposed as a reinforcement method for such age-old masonry buildings. Six specimens were fabricated with different aspect ratios (L/H = 1.0, 1.3, and 2.0) and used in static load tests to verify the reinforcement effect. The experimental results showed that the masonry walls before and after reinforcement were ruptured by rigid body rotation and slip. In addition, the maximum strength, maximum displacement, and dissipated energy of the walls were shown to increase after applying the adhesive stiffeners, thereby verifying the excellent reinforcement effect. Furthermore, an adhesive stiffener design for unreinforced masonry walls was proposed based on the increased shear strength achieved by using conventional glass fibers. The proposed design can be used as a basis for the application of adhesive stiffeners for unreinforced masonry walls.

A Study on Suspension Optimization of the Korean Personal Rapid Transit Vehicle (한국형 PRT차량의 현가장치 최적화 연구)

  • Kim, Hyun Tae;Kim, Jun Woo;Cho, Jeong Gil;Koo, Jeong Seo;Kang, Seokwon;Jeong, Raggyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.317-326
    • /
    • 2016
  • In this study, running stability and ride quality analyses, applying the 'ISO 3888 (double lane change)' and 'ISO 2631-1' (mechanical vibration and shock) tests, were performed for the suspension optimization of the Korean personal rapid transit (PRT) vehicle. The suspension optimization results for running stability and ride quality were derived by applying the multiresponse surface method. From the comparisons of the optimization results for different ratios of the objective functions of running stability and ride quality, we derived the best objective function ratio of 3.9-to-6.1 to improve both the running stability and the ride quality. With the optimized results, the suspension stiffness became 30.68 N/mm, between the value of the $S_2$ and $S_3$ models, and the damping coefficient equaled that of the $D_1$ model. When compared with the suspension of the current PRT vehicle, the roll angle, yaw rate, sideslip angle, and ride comfort were improved by 0.37, 0.37, 2.8, and 5, respectively.

A Study for Designing the Zonal Canvas Type of Stow Net (띠 전개범식 안강망어구의 연구)

  • KIM Dae-An;KO Kwan Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 1985
  • Various types of shearing devices which may be a substitute for the conventional beams in stow nets were considered, and then tentatively named "the zonal canvas type of stow net" having the shearing device made of zonal canvas was devised. A 1/3 model of the net was made and experimented at sea. Converted to the full scale, the measured water resistance R(kg) of the net was given by $R=5.6{\times}10^{3}V^{l.5}$ or $R=3.5\frac{d}{l}{\lambda}_b{\lambda}_l\;V^{1.5}$, where V is the water velocity (m/sec), d the diameter of netting bars, l the length of the bars, ${\lambda}_b$ the stretched circumference of net mouth (m), ${\lambda}_l$ the length of net stretched. The net height kept about $83\%$ of the side rope length regardless of the variation of V and the net breadth kept a value over $90\%$ of the head rope length until V reached 1 m/sec. These results were very successful according to expectation, but the conventional netting was requested a further improvement. Therefore, the netting was newly designed to have smaller size of meshes in the vicinity of net mouth and larger hanging ratio breadthwise. With the netting a full scale net was made and experimented by a stern trawler. The experiment gave a net breadth over $95\%$ of the head rope length until V reached 1m/sec and showed no faults in the net. But the net operation by the stern trawler was ascribed an inconvenience to its narrow breadth of stern slip way.

  • PDF

Effect of Green Microstructure on Sintered Microstructure and Mechanical Properties of Reaction-Bonded Silicon Carbide (성형미세구조가 반응소결 탄화규소체의 소결미세구조 및 기계적 특성에 미치는 영향)

  • 박현철;김재원;백운규;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.97-105
    • /
    • 1999
  • In the binary system of SiC and carbon, porosity and pore size distribution of green body was controlled by varying pH, by the addition of polyelectrolyte dispersants, and by using different particle size of starting powders. The preforms having different green microstructure were fabricated by slip casting from suspensions having different dispersion condition. The reaction bonding process was carried out for these preforms. The condition of reaction bonding was 1600$^{\circ}C$ and 20 min. under vacuum atmosphere. The analyses of optical and SEM were studied to investigate the effect of green microstructure on that of reaction bonded silicon carbide and subsequently the mechanical properties of sintered body was investigated. Different green microstructures were obtained from suspensions having different dispersion condition. It was found that the pore size could be remarkably reduced for a fine SiC(0.5$\mu\textrm{m}$). The bimodal microstructure was not found in the present study, which is frequently observed in the typical reaction bonded silicon carbide. It is considered that the ratio between SiC and C was responsible for the formation of bimodal microstructure. For the preform fabricated from the well dispersed suspension, the 3-point bending strength of reaction-bonded silicon carbide was 310${\pm}$40 MPa compared to the specimen fabricated from relatively agglomerated particles having lower value 260${\pm}$MPa.

  • PDF

A COMPARATIVE STUDY ON ALTERATIONS OF FACIAL BONE FRACTURE PATIENTS VISITING PUSAN UNIV.-HOSPITAL EMERGENCY CENTER (응급실을 내원한 구강악안면외과 안면골 골절 환자의 변화에 대한 비교 연구)

  • Lee, Jung-Hoon;Kim, Yong-Deok;Shin, Sang-Hun;Kim, Uk-Kyu;Kim, Jong-Ryoul;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.2
    • /
    • pp.171-176
    • /
    • 2005
  • Although there have been many clinical studies about the facial trauma in the recent as well as in the past, severity and frequency of facial trauma are reported multifarious. It seemed to be because of variety of social, cultural, and environmental factors, and the view point of investigators. In this study, we investigated about the patients visiting emergency room during recent 5 years(1999-2003), and compared with retrospective study during former 5 years(1992-1996) in Dept. OMS Pusan Univ-Hospital. We are assessed the cause, type, demographic ect. And analyzed alterations of facial bone fractures during past 2 periods. the results were as follows. The total number of patients was increased slightly. 429 patients treated for maxillofacial fractures between January 1992 and December 1996 and 466 patients treated between January 1992 and December 1996. The male-to-female ratio reduced in the second period by a factor of 0.7. Patients in the age groups of 10-19 years and 20-29 years increased by a factor of 4.2 and 7.9 in the second period. Assaults and falls in the second period decreased by a factor of 15.4 and 7.9. But, traffic accidents and slip downs in the second period increased by a factor of 6 and 6.6. The mandibular fractures(70.6%) showed the highest incidence, followed by zygomatic bone and arch fractures(7.5%), maxillary bone fractures(4.0%), and nasal bone fractures(4.0%). In the second period, the mid-face fracture was increased slightly. So, the mandibular fractures(69.0%) followed by maxillary bone fractures(12.9%), zygomatic bone and arch fractures(8.0%), nasal bone fractures(7.0%). Ramus fractures and body fractures of mandible was increased slightly in the second period.

Adhesion Performance of Natural Rubber-based Pressure-Sensitive Adhesives for Protecting of Opto-functionalized Sheet (광기능성시트 보호용 천연고무계 점착제의 점착 물성)

  • Park, Young-Jun;Lim, Dong-Hyuk;Kim, Hyun-Joong;Song, Hyun-Suk;Kwon, Hyuk-Jin
    • Journal of Adhesion and Interface
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • To prepare a natural rubber-based pressure-sensitive adhesive (PSA) for protection film of opto- functionalized sheet, natural rubber (NR) was blended with a DCPD type tackifier and three types of aliphatic hydrocarbon resins, respectively. Also, to supply low cohesion strength of NR, in the fixed ratio of tackifier, synthetic rubber, styrene-isoprene-styrene (SIS) block copolymer was blended with NR as a function of SIS contents. PSA performance of prepared PSAs was evaluated using probe tack and peel strength. Probe tack of NR/tackifier blends was increased with increasing tackifier contents, and showed maximum peak. In addition, probe tack of NR/tackifier blends slightly increased with increasing softening point of aliphatic hydrocarbon resins. Their peel strength increased up to 50 wt% of tackifier contents, but in the over contents of tackifier, they showed stick-slip failure mode. Finally, probe tack of NR/SIS/tackifier blends showed the maximum values at 20~40 wt% of tackifier contents, but at 20 wt% of tackifier contents, they showed fibrillation. For this reason, peel strength showed maximum values at 40 wt% of tackifier contents.

  • PDF

A Comparative Study on the Characteristics of Friction with/without shoes by Analyzing Bio-signals during walking (보행 시 생체신호분석을 통한 신발 착용 유무에 따른 마찰 특성 비교)

  • Oh, Seong-geun;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2018
  • The utilized coefficient of friction (UCOF) as a ratio of the shear force to the normal force on the ground during walking is used to identify the point at which slip is likely to occur. Shoe walking will change the utilized coefficient of friction by shoe design such as sole thickness and hardness, heel shape, and outsole pattern. In this study, subjects are 21 adults (10 female, 11 male, age: $25.2{\pm}2.3yrs$, height: $165.6{\pm}7.2cm$), analysis variables were walking speed, GRF, when the UCOF is maximal, and Tangent of CoP-CoM angle, and correlation analysis with the utilized friction coefficient (UCOF). As a result, First, for the shod walking the time point which UCOF is maximum about heel strike was faster and the magnitude was larger than for barefoot walking. Second, the correlation between the tangent of CoP-CoM and UCOF of right foot was higher at the left heel striking point (UCOF2_h) which occurred in the post propulsion phase than at the right heel striking point (UCOF1_h). This suggests that the right foot UCOF is related to the braking phase of left foot( which is the propulsion phase of right foot) rather than the braking phase of right foot.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

Experimental Study on the Adhesion and Performance Evaluation of Joints for Modified Polyethylene Coated Steel Pipes (개질 폴리에틸렌 코팅 강관의 부착 및 체결부 성능 평가 연구)

  • Myung Kue Lee;Sanghwan Cho;Min Ook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • In this study, as part of the development of a monitoring system for the efficient maintenance of steel pipes, an experimental study was conducted to evaluate the performance of steel pipes treated with modified polyethylene coating. In the case of the conventional mechanical pre-coating method, there was a deterioration in polyethylene adhesion during expansion testing, which led to the application of a chemical pre-treatment process using a calcium-mixed phosphate zinc film to resolve this issue. SEM and EDX analyses showed that the densest structure was observed at a Zn/Ca ratio of 1.0, and improved heat resistance compared to the conventional method was confirmed. Additionally, to prevent coating detachment during expansion, an evaluation of adhesion and elongation was conducted on steel pipes with modified polyethylene coating, incorporating materials such as elastomers based on maleic anhydride grafting, metal oxides, blocking agents, and slip agents. Experimental results showed that the specimen (S4) containing all modified materials exhibited more than a 25% performance improvement compared to the specimen (S2) containing only metal oxides. Lastly, the development and performance evaluation of wedge-shaped socketing and pressing wheels, which are part of the pipe fixing accessories, were conducted to prevent surface coating damage on the completed pipes.