• Title/Summary/Keyword: slightly warm

Search Result 81, Processing Time 0.03 seconds

Effect of Eddy on the Cycle of 210Po and 234 in the central Region of Korean East Sea (동해 중부해역에서 210Po과 234Th의 순환에 대한 소용돌이의 영향)

  • YANG, HAN SOEB;KIM, SOUNG SOO;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 1995
  • The vertical profiles of natural 210Pb, 210Po and 234Th activities were measured for the upper 100 m of water column at three stations in the middle region of the Korean East Sea during May 1992. And the distribution of these radionuclides was discussed associated with the formation of warm eddy or water mass. The main thermocline was maintained between the depth of 50 and 100 m at the southern station (Sta. A1), and between the depth of 10 to 50 m at the coastal station of Sockcho (Sta. B10). Contrastingly, a main thermocline at Sta. A10, which locates near the center of warm eddy, was observed below 230 m depth. Between 50 and 220 m depth of Sta. A10 is there a relatively homogeneous water mass of 10.1${\pm}$0.5$^{\circ}C$, which is significantly higher in temperature and lower in nutrient than the other two stations. It seems to be due to sinking of the warm surface water in which nutrients were completely consumed. Both 210Pb and 210Po show the highest concentration at Sta. A1 and the lowest at Sta. B10 among the three stations. Also, the 210Pb activity is generally higher in the upper layer than in the lower layer, while 210Po activity represents the reversed pattern at all three stations. At Sta. A1 and Sta. B10, the activities of 210Po relative to its parent 210Pb were deficient in the water column above the main thermocline, but were excess below the thermocline. However, the station near the center of warm eddy(Sta. A10), shows no excess of 210Po in the depths below 50 m, although its defficiency is found in the upper layer like the other stations. At Sta. A1 and b10. 234Th activities are slightly lower in the surface mixed layer than in the deeper region However, at Sta. A10, 234Th activity in the upper 30 m is higher than below 50 m or in the same depth of the other stations, probably because of the high concentration of particulate matter. The residence time of 210Po in the surface mixed layer at Sta. A10 is 0.4 year, much shorter than at the other two stations(about one year). Above 100 m depth, the residence times of 234Th range from 18 to 30 other two stations(about on year). Above 100 m depth, the residence times of 234Th range from 18 to 30 days at all stations, without significant regional variation. The percentages of recycled 210Po within the thermocline are 39% and 92% at Sta. A1 and Sta. B10, respectively. Much higher value at Sta. B10 may be due to a thin thickness of the mixed layer as well as the slower recycling rate of 210Po in the main thermocline.

  • PDF

A Study on the Byung-Su Jo's House in Yongyu Island (인천 용유도의 조병수가옥에 대한 연구)

  • Han, Jong-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.332-337
    • /
    • 2017
  • This study investigates the site and architectural space of Byung-Su Jo's traditional house on Yongyu Island in Incheon. The house is located on a peaceful, warm site that is well protected by surrounding mountains, such as Hyunmubong to the rear, Jwacheongyong to the left, Wubackho to the right, and Ansan in front. The house was designed with an open layout with a sarangchae and anchae. There is a spring on the left side of the sarangchae, and a stream auspiciously flows from the west to the east in front of the sarangmadang. The house generally faces south, but to avoid pressure by the height of Ansan in the south direction, it is slightly turned to the east. There is a wide, rectangular pond that covers the pungsu weak point of the empty open view between the right and left mountains. The sarangchae space is composed of front 6 Gan and side 3 Gan. The anchae space is also composed of front 6 Gan and side 3 Gan,and it has a typical L-shaped anchae layout for the middle region of Korea. There is no shrine in the backyard, where yongmag is descending from hyunmubong, and a jangdokdae is installed to the west direction of the anbang due to narrow and slope backyard space.

Distribution And Abundance Of Copepods In The Gulf Of Alaska And The Bering Sea In Summer 1978 (하계(夏季) Alaska만(灣)과 Bering해(海)의 Copepods의 분포조성(分布組成))

  • Lee, Sam Seuk
    • 한국해양학회지
    • /
    • v.15 no.1
    • /
    • pp.17-33
    • /
    • 1980
  • The materials were obtained in the eastern Gulf of Alaska and the south- eastern Bering Sea during the cruise of the research vessel, Ohdae San, from July to October 1978. A total of 76 samples were taken by NORPAC net from a depth of 200 meters or less in coastal areas. 1. The surface water temperature in the coastal waters, varing from 9 to 10$^{\circ}C$, was lower than that in offshore waters which varied from 10 to 12.9$^{\circ}C$ in the eastern Gulf of Alaska. Thermocline was formed in the 30∼50 meter layer. Salinity of the coastal waters of Kenai Peninsula and Kodiak was 30 which was slightly lower than that of offshore. 2. The water temperature of the surface layer down to 30 meters varied from 7 to 10$^{\circ}C$ and from 1 to 9$^{\circ}C$ in the layer below 30 meters in the south-eastern Bering Sea. Meandering thermal front spread from the Alaska Peninsula to St. Matthew Island by way of St. Paul, and a thermocline was found at the 30∼50 meter layer Salinity ranged from 31.0 to 33.0 and that of northern and coastal waters was little lower than that of offshore. 3. Zooplankton biomass fluctuated from 0.1 to 23.6cc/10㎥ in the eastern Gulf of Alaska and 2.0 to 26.1cc/10㎥ in the south-eastern Bering Sea. Plankton was rich in the following areas, the inshore Kodiak waters, the northern Bering Sea, the Coastal waters and waters adjacent to Alutian islands however, poor in the central Bering Sea. In general, the south-eastern Bering Sea has a higher concentration of plankton volume than the eastern Gulf of Alaska. 4. Twenty three species representing 17 genera of copepods were identified from the samples. These were mostly composed of the cold water species, such as Pseudocalanus minutus, Acartia longiremis, Metridia lucens and Eucalanus bungii var. bungii. 5. The cold oceanic species were composed of Calanus cristatus, C.plumchrus, Metridia lucens, Eucalanus bungii var. bungii and Scolecithricella minor. The cold neritic species were Centropages abdominalis, Pseudocalanus minutus, Acartia longiremis, Eurytemora herdmanii, Pontella pulvinata, P. longipedata and Tortanus discaudatus. On the other hand, the warm oceanic species were Calanus tenuicornis and Oithona plumifera. The cosmopolitan species were Calanus finmarchicus and Oithona similis. 6. It was suggested that the cold oceanic species, Eucalanus bungii var. bungii and Metridia lucens in the south-eastern Bering Sea can be recommended as a valuable indicator species for finding the fishing grounds of demersal fish such as pollock and yellowfin sole in this area.

  • PDF

Seasonal Distribution of Oceanic Conditions and Water Mass in the Korea Strait and the East China Sea: Correction of Atmosphere Cooling Effect (대한해협과 동중국해의 해황과 수괴의 계절분포: 대기에 의한 냉각효과 보정)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul;Kwak, Chong-Heum
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.47-64
    • /
    • 2001
  • Water mass classification was conducted using the data of 1985 and 1986 in the East China Sea and the Korea Strait. Kuroshio water (type K) and mixed water (type I) were broadly distributed at 50 m depth in winter and spring, and mixed waters (type I to IV) were distributed in summer and autumn. At 100 m depth of the East China Sea, and mixed water (type I) was broadly distributed in winter and spring, and mixed waters (type I to III) were in summer, and type I was in autumn. Water mass in summer is the most influenced from the Chinese coastal water. In the Korea Strait, the Kuroshio water (type K) was the main water mass in winter and spring, and mixed waters (type I to IV) were in summer and autumn. If temperatures are corrected to remove the cooling effect from the atmosphere, the Kuroshiowater region was diminished, however the mixed water region was expanded in winter and spring. This shows that although the Kuroshio water appears to be a main water mass of the East China Sea and the Korea Strait in winter andspring, in reality the mixed water (type I) which is slightly changed from the Kuroshio water (type K) widely distributed. The tongue-shaped distribution of low density surface water indicates that the water mixed with the Chinese coastal water flows to the Korea Strait and the Okinawa in summer.

  • PDF

Study on Compass, Carpenter's square, The Beam of Balance and the Weight of balance[規矩權衡] in "Somun(素問).Maekyojeongmiron(脈要精微論)" ("소문(素問).맥요정미론(脈要精微論)"의 규구충권(規矩衡權)에 대한 연구)

  • Lee, Hye-Yeon;Kang, Jung-Soo
    • Journal of Korean Medical classics
    • /
    • v.23 no.1
    • /
    • pp.101-114
    • /
    • 2010
  • In the perspective of the correspondence of heaven and man[天人相應], people live through Gi of heaven and earth[天地之氣], and the human body which is a small universe[小宇宙] itself receives influence while sympathizing with the Gi and heaven[天氣]. So with unexpected incident of the Eum and Yang, four season[陰陽四時], ups and downs of warmth of cold and chilliness of warm[寒熱溫涼] differs, and the position of Gi of human[人氣] changes, regimen and application of acupuncture, and images[象] of the pulse changes. In "Maekyojeongmiron(脈要精微論)", ups and downs of Eum and Yang changes by four season[四時], and correspondence of ups and downs of pulse law is explained with compass, carpenter's square, the beam of balance and the weight of balance[規矩權衡]. Compass[規] is a measure of instrument that can draw a circle, like regulating the measure and differing the center of the circle and diameter and drawing a circle, compass is a image of Gi of Yang[陽氣] that was staying deep inside the body in winter stretching out by big fault[太過不及] of year and energy[元氣] of human in spring. Carpenter's square[矩] is a instrument that draws direction, which is a image of Gi of Yang flourishing in summer and when it gets highly flourished, again the Gi of Eum[陰氣] comes alive and falls. The beam of balance[衡] is a scale, like a scale that tilts at once when one side is slightly heavy, the beam of balance is a image Gi of yang that is fully flourished in summer and about to descent again, which is just about to fall but not going down yet. The weight of balance [權] is a image of gi of yang which as descent to the bottom and staying in the deepest place. compass, carpenter's square, the beam of balance and the weight of balance is not a direct pulse image[脈象], but standard image of pulse of pulse corresponding to the Gi of human[人氣] that changes by four season, and the explanation includes the pulse image of four season like the taut, full, floating, deeply gather[弦鉤浮營] of "Okgijinjangron(玉機眞藏論)" or taut, full, skip, float, deep [弦鉤代毛石] of "Pyeong-ingisangron(平人氣象論)". So with compass, carpenter's square, the beam of balance and the weight of balance, can judge is human correspond in Eum and Yang, four seasons, this is importantly used in examination of pulse[診脈] with existence and nonexistence, and prognosis of illness.

Locations and Topographical Character of the MAEULSOOP in the Southwestern and the Eastern Region (마을숲의 분포 위치와 지형적 공간특성 유형화 방안 - 경북 의성, 전북 진안 및 전남 함평지역을 대상으로)

  • Kwon, Jino;Oh, Jeong-Hak;Lee, Jeong-Youn;Park, Chan-Ryul;Choi, Myoung-Sub
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.85-93
    • /
    • 2008
  • The MAEULSOOP, Korean traditional village groves have been installed and survived since 7th Century to serve local village dwellers as a community forest. The common sense of their reasons for being is related to the surroundings such as hills, waterways and wind-ways. To understand the roles in a local community, spatial characteristics of distribution, locations and shapes were tested at the two-characterized regions, the Southwestern Flat Region and the Eastern Hilly Region. Approximately more than 500 written evidences related to trees and forests were surveyed, for example village names, folk tales and lists of designated trees for protection. Twenty sites in each region were selected and tested for the spatial analysis. Aerial photographs, DEM and the ArcGIS with a modified AML for slope analysis are applied based on the criteria of the KLCIS(Kwon, 2002; 권진오, 2008). The major factors in the role of the MAEULSOOP based on the spatial character of two regions are; the array and locations of hills for encircling or exposure, locations against corridors and waterway or not, locations of the community to serve, the conservation of energy. Although locations and shapes of the MAEULSOOP are slightly different, it seems that one of the prime roles is what makes their everyday life difficult the most in the community.

  • PDF

Holocene climate characteristics in Korean Peninsula with the special reference to sea level changes (해수면 변동으로 본 한반도 홀로세(Holocene) 기후변화)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.235-246
    • /
    • 2011
  • Sea level fluctuations during the Holocene reconstructed by the results of age dating, microfossils researches and sedimentary facies from coastal alluvial plains contain the valuable informations on climatic changes. The sea level during 'maximum phase of transgression' during 6,000~5,000 yr BP was slightly higher than the present by approximately 0.8~1.0 m and the summer temperature conditions seemed to be higher than those of the present by 2~3℃ in the Central Europe when the period of 'Climatic Optimum' might be dominant. The sea level in Korean Peninsula was assumed by 0.8~1.0 m higher at that time compared to the present and climate seemed to be warmer. At 2,000~1,800 yr BP in Korean Peninsula, the sea level reached the higher stand than the present by approximately 1.1~1.3 m and the climatic conditions might be warm similar to the period of 'Climatic Optimum'. Although the temperature in the Central Europe during the period of 'Subboreal' was about 2~3℃ cooler, it is supposed that the sea level in Korean Peninsula was relatively higher than the present. The sea level at 2,300 yr BP might be similar to that of the present, which was the lowest level since the mid-Holocene. From the fact, climatic environment during the cold period might not be reflected exactly in the sea level.

Numerical Simulation of Residual Currents and tow Salinity Dispersions by Changjiang Discharge in the Yellow Sea and the East China Sea (황해 및 동중국해에서 양쯔강의 담수유입량 변동에 따른 잔차류 및 저염분 확산 수치모의)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.67-85
    • /
    • 2007
  • A three-dimensional hydrodynamic model with the fine grid is applied to simulate the barotropic tides, tidal currents, residual currents and salinity dispersions in the Yellow Sea and the East China Sea. Data inputs include seasonal hydrography, mean wind and river input, and oceanic tides. Computed tidal distributions of four major tides($M_2,\;S_2,\;K_1$ and $O_1$) are presented and results are in good agreement with the observations in the domain. The model reproduces well the tidal charts. The tidal residual current is relatively strong around west coast of Korea including the Cheju Island and southern coast of China. The current by $M_2$ has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a anti-clockwise circulation in the Yellow Sea. General tendency of the current, however, is to flow eastward in the South Sea. Surface residual current simulated with $M_2$ and with $M_2+S_2+K_1+O_1$ tidal forcing shows slightly different patterns in the East China Sea. The model shows that the southerly wind reduces the southward current created by freshwater discharge. In summer during high runoff(mean discharge about $50,000\;m^3/s$ of Yangtze), low salinity plume-like structure(with S < 30.0 psu) extending some 160 km toward the northeast and Changjiang Diluted Water(CDW), below salinity 26 psu, was found within about 95 km. The offshore dispersion of the Changjiang outflow water is enhanced by the prevailing southerly wind. It is estimated that the inertia of the river discharge cannot exclusively reach the around sea of Cheju Island. It is noted that spatial and temporal distribution of salinity and the other materials are controlled by mixture of Changjiang discharge, prevailing wind, advection by flowing warm current and tidal current.

  • PDF

Reduction of Bacterial Wilt Diseases with Eggplant Rootstock EG203-Grafted Tomatoes in the Field Trials (가지대목 EG203을 이용한 토마토 풋마름병 경감효과)

  • Lee, Mun Haeng;Kim, Ji Kwang;Lee, Hee Kyoung;Kim, Keyng Jae;Yu, Seung Hun;Kim, Young Shik;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Wilt damage on tomato plants caused by Ralstonia solanacearum has been increased as the areas of tomato cultivation increased during the warm seasons. Also, the tomato rootstocks used to prevent the disease occurrence are not effective in the highly prevailing regions. Therefore, bacterial wilt resistant eggplant rootstock EG203, collected from AVRDC, was tested for its effect to deter the Ralstonia solanacearum wilt disease in the greenhouses at Buyeo Tomato Experiment Station from 2003 to 2005, and at Gumi, Kyungpook province from 2009-2011. Planting of eggplant rootstock EG203 should be done three weeks before the planting of tomato scions so that they can have similar stem diameter (2.5-3.0 mm) and can be easily grafted. Both insertion and inarching grafting showed 93-96% success rates. In the greenhouse tests at Buyeo Tomato Experiment Station from 2003 to 2005, eggplant rootstock EG203-grafted tomatoes showed the disease occurrence of 4.3%. On the other hand, non-grafted or other commercial rootstock-grafted tomatoes showed disease occurrence of 58.0% and 25.0-36.7%, respectively. In the greenhouse tests at Gumi, Kyungpook province in 2009, the disease occurrence on the EG203-grafted and non-grafted tomatoes was 2-5% and 20-80%, respectively. In 2010, at Gumi, Kyungpook province, when the wilt disease occurred slightly, the tomatoes grafted with tomato rootstocks B-blocking and Chung-gang, and eggplant rootstock EG203 showed similar disease severities, but EG203-grafted tomatoes formed lately cluster, resulting in the reduction of yield compared to tomato-grafted tomatoes. In 2011, at Gumi, Kyungpook province, when the wilt disease occurred severely, the tomato rootstocks 'B-blocking' and Chung-gang and eggplant rootstock EG203-grafted tomatoes showed disease occurrences of 60-85% and 0-1%, respectively. Therefore, it was concluded that tomato rootstocks 'B-blocking' and 'Chung-gang' are more useful in the areas contaminated with low levels of pathogen and eggplant rootstock EG203 is more useful in the areas contaminated with high levels of pathogen.

Prediction of Radish Growth as Affected by Nitrogen Fertilization for Spring Production (무의 질소 시비량에 따른 생육량 추정 모델식 개발)

  • Lee, Sang Gyu;Yeo, Kyung-Hwan;Jang, Yoon Ah;Lee, Jun Gu;Nam, Chun Woo;Lee, Hee Ju;Choi, Chang Sun;Um, Young Chul
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.531-537
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by 0.7 and $1.4^{\circ}C$, respectively, during the last 30 years. Radish (Raphanus sativus), one of the most important cool season crops, may well be used as a model to study the influence of climatic change on plant growth, because it is more adversely affected by elevated temperatures than warm season crops. This study examined the influence of transplanting time, nitrogen fertilizer level, and climate parameters, including air temperature and growing degree days (GDD), on the performance of a radish cultivar 'Mansahyungtong' to estimate crop growth during the spring growing season. The radish seeds were sown from April 24 to May 22, 2012, at internals of 14 days and cultivated with 3 levels of nitrogen fertilization. The data from plants sown on April 24 and May 8, 2012 were used for the prediction of plant growth as affected by planting date and nitrogen fertilization for spring production. In our study, plant fresh weight was higher when the radish seeds were sown on $24^{th}$ of April than on $8^{th}$ and $22^{nd}$ of May. The growth model was described as a logarithmic function using GDD according to the nitrogen fertilization levels: for 0.5N, root dry matter = 84.66/(1+exp (-(GDD - 790.7)/122.3)) ($r^2$ = 0.92), for 1.0N, root dry matter = 100.6/(1 + exp (-(GDD - 824.8)/112.8)) ($r^2$ = 0.92), and for 2.0N, root dry matter = 117.7/(1+exp (-(GDD - 877.7)/148.5)) ($r^2$ = 0.94). Although the model slightly tended to overestimate the dry mass per plant, the estimated and observed root dry matter and top dry matter data showed a reasonable good fit with 1.12 ($R^2$ = 0.979) and 1.05 ($R^2$ = 0.991), respectively. Results of this study suggest that the GDD values can be used as a good indicator in predicting the root growth of radish.