• 제목/요약/키워드: sliding wear and friction

검색결과 375건 처리시간 0.024초

하중변화에 따른 GF/PUR 복합재료의 연삭마모특성 (Effect of load upon the abrasive wear characteristics of glass fiber reinforced polyurethane composites)

  • 고성위
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.495-502
    • /
    • 2010
  • The effect of load and sliding speed on abrasive wear characteristics of glass fiber/polyurethane (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The friction coefficient, cumulative wear volume and surface roughness of these materials against SiC abrasive paper were determined experimentally. Experimental results showed that the surface roughness of the GF/PUR composites was increased as applied load was higher in wear test. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on applied load and sliding speed for these composites. It could be verified by scanning electric microscopy (SEM) photograph of surface tested that major failure mechanisms were lapping layers, ploughing, delamination, deformation of resin and cracking.

반응소결 탄화규소의 접동조건에 따른 마찰계수 및 미세구조 (Friction Coefficient and Microstructure of Reaction-Bonded Silicon Carbide According to Sliding Conditons)

  • 김호균;김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제32권7호
    • /
    • pp.825-831
    • /
    • 1995
  • Reaction-bonded SiC-Si material was fabricated by infiltration of Si melt into a mixture of $\alpha$-SiC and carbon at 175$0^{\circ}C$ under the vacuum atmosphere. Wear properties were analyzed by ball-on-plate wear tester, changing loading weight, sliding speed, sliding time and atmosphere, Results showed that the friction coefficient was decreased with increasing load and sliding velocity. The lowest friction coefficient of 0.05 was obtained under an oil atmosphere. The analysis of the wear surface indicated that the areas wehre particles were pulled out and where free silicon particles worn out preferentially serve as liquid reservoirs to decrease the wear resistance.

  • PDF

무급유공기압축기 개발을 위한 PTFE계 복합재료의 마찰마모 특성에 관한 연구 (A Study on the Effects of Friction and Wear Properties of PTFE Composites for Oil Free Air Compressor)

  • 김용직;정하돈;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.67-74
    • /
    • 2000
  • Recently, PTFE-polymide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polymide composites. The friction and wear test was carried out for the different composition ratio under the atomsphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s becuase adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI80%. PI 100%showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성 (Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy)

  • 황성완
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.

Lubricating Effect of Water-soluble Hexagonal Boron Nitride Nanolubricants on AISI 304 Steel Sliding Pair

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.43-48
    • /
    • 2023
  • In this study, we investigate the tribological behavior of AISI 304 stainless steel pairs under deionized water and hexagonal boron nitride (h-BN) water dispersion lubrication. The specimen friction and wear properties are evaluated using a reciprocating ball-on-flat tribometer. The coefficient of friction remains nearly constant throughout the test under both lubricant conditions. The wear depth of the specimens under h-BN lubrication is smaller than that under deionized water lubrication, indicating the inhibition behavior of h-BN nanolubricants on direct metal-metal contacts. Optical micrographs and stylus profilometer measurements are performed to evaluate the severity of damage caused by the sliding motion and to determine the wear morphology of the specimens, respectively. The results show that h-BN nanolubricants does not have a significant effect on the friction behavior but demonstrates reduced wear owing to their trapping effect between the sliding interfaces. Moreover, scanning electron microscopy and energy-dispersive X-ray spectroscopy images of the specimens were acquired to confirm the trapping effect of h-BN between the sliding interfaces. The results also suggest that the trapped lubricants can distribute the contact pressure, reducing the wear damage caused by the metal-metal contact at the interface. In conclusion, h-BN nanolubricants have potential as an anti-wear additive for lubrication applications. Further investigation is needed to provide direct evidence of the trapping effect of h-BN nanoparticles between the sliding interfaces. These findings could lead to the development of more efficient and effective lubricants for various industrial applications.

PMMA(Poly Methyl Methacrylate) 박막 코팅 층의 마찰 및 마멸 거동 (Tribological Behavior of Thin PMMA (Poly Methyl Methacrylate) Coating Layers)

  • 강석하;김용석
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.716-722
    • /
    • 2004
  • Effects of sliding speed, applied load, and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a spin coating process with two different thicknesses, $1.5\mu\textrm{m}$ and $0.8\mu\textrm{m}$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms of the coatings were investigated by examining worn surfaces using an SEM. Friction coefficient of the coatings decreased with the increase of the applied load. Both adhesion and deformation of the coating determined the coefficient. The thicker PMMA layer with the thickness of $1.5mutextrm{m}$ showed lower friction coefficient than the thinner layer under most test conditions. Effects of sliding speed and applied load on the frictional behavior were varied depending on the thickness of the coating layer.

고체윤활제 $Cu_2S$첨가 청동의 미끄럼 마찰마모특성 연구 (A Study of Sliding Friction and Wear Properties of Bronze added $Cu_2S$ as Solid Lubricants)

  • 이한영;김태준;조용재
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.60-65
    • /
    • 2004
  • [ $MoS_2S$ ] is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2S$ limited its wide application. This study is aimed to investigated the possibility for application to solid lubricants for $Cu_2S$ as a substitute of v. Bronzes added $Cu_2S$ and $MoS_2S$ are produced by powder metallurgy in this study, and then evaluated their friction and wear properties. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces, bronze and bronzes added $Cu_2S/MoS_2$. Addition of $Cu_2S$ to bronze leads to relatively good friction and wear properties, although it is not so good as addition of $MoS_2S$. But the properties of bronze added $Cu_2S/MoS_2$ would be not suitable for the condition under the high sliding speed.

  • PDF

세라믹 재료의 미끄럼 환경 변화에 따른 마찰 및 마멸 거동 (Friction and Wear Behavior of Ceramics under Various Sliding Environments)

  • 장선태;이영제
    • Tribology and Lubricants
    • /
    • 제11권3호
    • /
    • pp.11-23
    • /
    • 1995
  • The friction and wear behavior of $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used for a wear test method. Using the servo-motor, the sliding speed did not alternate due to the frictional forces. Three kinds of loads were selected to watch the variation of the wear rates and the frictional forces under a constant speed. Three kinds of sliding conditions were used to see the effects of the oxidation and the abrasion. The dominant wear mechanisms of $Al_{2}O_{3}$ were the abrasion and the formation of transfer layers. The abrasion has a great effect on the wear of SiC. The wear of $Si_{3}N_{4}$ was due to the asperity-failure and the oxidation. Also, the wear rate of each ceramic is shown to be related to the frictional power provided to the tribological system.

Friction and Wear Properties of Cu and Fe-based P/M Bearing Materials

  • Tufekci Kenan;Kurbanoglu Cahit;Durak Ertugrul;Tunay R. Fatih
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.513-521
    • /
    • 2006
  • The performances of porous bearings under different operating conditions were experimentally investigated in this study. Material groups studied are 90%Cu + 10%Sn bronze and 1%C + % balance Fe iron-based self-lubricating P/M bearings at constant (85%) density. In the experiments, the variation of the coefficient of friction and wear ratio of those two different group materials for different sliding speeds, loads, and temperatures were investigated. As a result, the variation of the friction coefficient-temperature for both constant load, and constant sliding speed, friction coefficient-average bearing pressure, PV-wear loss and temperature-wear loss curves were plotted and compared with each other for two materials, separately. The test results showed that Cu-based bearings have better friction and wear properties than Fe-based bearings.

미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향 (The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.