• Title/Summary/Keyword: sliding wear and friction

Search Result 375, Processing Time 0.024 seconds

Tribology Characteristics in 300 μm of Hexagonal Array Dimple Pattern

  • Choi, H. J.;Hermanto, A. S.;Kwon, S. H.;Kwon, S. G.;Park, J. M.;Kim, J. S.;Chung, S. W.;Chae, Y. H.;Choi, W. S.
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.308-315
    • /
    • 2015
  • In the tribological performance of materials, a textured surface reduces the friction coefficient and wear. This study investigates the effects of a pattern of 300 µm dimples in a hexagonal array on the tribological characteristics. Previous studies investigated 200 µm dimples by using a similar material and method. There are three frictional conditions based on the Stribeck curve: boundary friction, mixed friction, and fluid friction. In this experiment, we investigated the frictional characteristics by conducting frictional tests at sliding speeds ranging from 9.6 rpm to 143.3 rpm and a normal load ranging from 13.6 N to 92 N. We used a photolithography method to create dimples for surface texturing. We used five specimens with different dimple densities 10%, 15%, 20%, 25%, and 30% in this study. The dimple density on the surface area is one of the important factors affecting the friction characteristics. The duty number graph indicates a fully developed fluid friction regime. Fluid friction occurs at a velocity of 28.7-143.3 rpm. We observed the best performance at a dimple density of 10% and a dimple diameter of 300 µm in the hexagonal array, the lowest friction coefficient at 0.0037 with 9.6 rpm 9.6N load, and the maximum friction coefficient at 0.0267 with 143.3 rpm 92N load.

Tribological Characteristics of Plasma Ion Nitriding Surface Treatment (플라즈마 이온 질화 표면처리의 윤활 및 마모 특성)

  • 좌성훈;김선교;박주승
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 1996
  • Scuffing and severe wear of the highly stressed sliding components have been very critical problems in the development of a rotary compressor. In order to improve durability and reliability of the compressor, plasma ion-nitriding was applied on the shaft and the vane surface. The effects of different treatment conditions on the mechanical and tribological properties of the ion-nitrided surfaces were investigated. Ion-nitrided surfaces showed better tribological performances than untreated surfaces. The best wear performance was observed when the shaft was nitrided in the condition of 450$\circ$C, 7 hours, $N_2:H_2=1:4$ gas mixture by forming a ductile nitrided layer which has $\gamma'$ phase microstructure. As nitrogen gas pressure increased, $\varepsilon$ phase layer was formed. This hard phase layer was observed to be more beneficial for the vane in reducing friction and wear.

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

Frictional characteristics of stainless steel lubricated with pressurized high temperature water (고온/고압 하에서 물로 윤활되는 스테인레스 강의 마찰 특성)

  • 이재선;김은현;김지호;김종인
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.96-99
    • /
    • 2001
  • The fatigue life of support bearings is one of the most critical factors for the performance of a control rod driving mechanism. They are operated at high temperature and high pressure and especially lubricated with dramatically low viscosity water. The support bearing is made of standardized 440C stainless steel, and it supports thrust load including the weight of the driving system and external force. Friction and wear characteristics of this material operating under severe lubrication condition is not well known yet, although it is expected to be changed with respect to temperature and boundary pressure. So the friction characteristics are investigated in sliding conditions using the reciprocating tribometer which can simulate the operating conditions. Highly purified water is used as lubricant, and the water is heated up and pressurized. Friction farce on the reciprocating specimens is monitored by the load cells. The results of the experiments are presented in this paper.

  • PDF

Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (2) - Effect of Applied Load on Wear Behavior - (용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (2) - 작용하중의 영향 -)

  • Lee, Kwang Jin;Kim, Kyun Tak;Kim, Yeong Sik
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.298-303
    • /
    • 2013
  • In this work, the effect of applied load on the wear behavior of Al/SiC composites was studied. Al/SiC composites were fabricated following the thermal spray process. Dry sliding wear tests were performed on these composites under four different applied loads, i.e., 5, 10, 15, and 20 N. The wear behaviors of the composites under these applied loads were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Under applied loads of up to 15 N, the wear rates of Al/SiC composites decreased with an increase in the applied load because of the formation of an adhesion layer on the worn surface. However in the case of an applied load of 20 N, the wear rate was significantly high because the formation and fracture of the adhesion layer were repeated continuously. These results show that the wear behaviors of the tested composites are significantly influenced owing to the applied loads.

Tribological Performance of A1203/Ni0r Coating

  • Chae, Young-Hun;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.911-918
    • /
    • 2002
  • The tribological performance of A1$_2$O$_3$/NiCr coating deposited on steel (SH45C) was investigated under lubrication. The parameters of sliding wear consist of normal load and coating thickness. Test result showed that there was no evidence of an improved bonding strength in the coating. However, the wear resistance of the A1$_2$O$_3$/NiCr coaling was significantly greater than that of the Al$_2$O$_3$ coating. It was eviclent that the residual stress for the A1$_2$O$_3$coating was higher than that of the A1$_2$O$_3$/NiCr coating from the Scratch test failure of coating. The bond coating played an important role in decreasing the residual stress. Also, it was found that the residual stress had d notable influence on the wear mechanism.

Effect of the Amount of Free Silicon on the Tribological Properties of Si-SiC (Free Silicon 함량에 따른 Si-SiC 복합재료의 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.520-528
    • /
    • 1994
  • An investigation was carried out to understand the effect of the amount of free silicon on the tribological properties of Si-SiC. The specimens of dense Si-SiC composites with various amount of free silicon were fabricated in the temperature of 175$0^{\circ}C$ after molding under various pressure. Wear properties were measured by ball-on-plate wear tester under the constant weight of 4 Kgf at constant sliding speed of 500 mm/sec in water. As the result, the Rockwell hardness and fracture strength of Si-SiC composites remained nearly constant up to 16.62 vol% of free silicon in the Si-SiC microstructure. The Si-SiC composites containing the free silicon of 16.62 vol% was considered to be prominent in the tribological properties, which had the friction coefficient of 0.08 and the specific wear rate of 2.4$\times$10-8$\textrm{mm}^2$Kgf-1. The analysis of the wear surface indicated the complicated processes occuring on the surface such as fine polishing, abrasion, microfracture.

  • PDF

Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions (접촉 조건에 따른 C/C-SiC-Cu복합재와 Al/SiC복합재의 마모 특성에 관한 연구)

  • Kim, Byung-Kook;Shin, Dong-Gap;Kim, Chang-Lae;Goo, Byeong-Choon;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.

An investigation of tribology properties carbon nanotubes reinforced epoxy composites (표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구)

  • Sulong A.B.;Goak J.C.;Park Joo-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

Experimental Study on Friction Characteristics of Pb-free Pin Bushing for an Internal Combustion Engine (내연기관용 무연 핀부싱의 마찰특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Oh, Kyoung-Seok
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.306-311
    • /
    • 2007
  • This paper presents the friction characteristics of pb-fres pin bushing bearings for an automotive gasoline engine. The external load is 100 N to 600 N and the speed of the pin bushing bearing is 1000 rpm to 3000 rpm against the rubbing surfaces. And the contact modes of rubbing surfaces between a piston pin and a pb-free pin bushing specimen are a dry friction, an oil lubricated friction and a mixed friction that is starved by a lack of engine oil. Two influential factors of a contact rubbing modes and a material property are very important parameters on the tribological performance of a friction characteristic between a piston pin and a pb-free pin bushing. The experimental result shows that the pin bushing speed of 2000 rpm shows a typical oil film lubricated sliding contact mode in which means that as the applied load is increased, the friction loss is increasing. But other contact mode depending on the speed and the load may affect to the fiction coefficient without a regular and uniform trend. In summary, the oil lubricated rubbing surface definitely decreases a running-in period in short and increase oil film stiffness, and this may leads the reduction of a friction loss.