• Title/Summary/Keyword: sliding span

Search Result 38, Processing Time 0.027 seconds

Watertightness Property Evaluation of Rain-Block System (개폐식 대공간 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Kim, Yun-Ho;Baek, Ki-Youl;Kim, Jong-Su;Lee, Sun-Gyu;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.13-16
    • /
    • 2010
  • This study is an Investigation on the Watertightness Properties of Rain-Block System on the Sliding-Roof Joint of Large-Span Membrane Structures. In this experimental, we test the watertightness performance of joint part of sliding door in roof of large span membrane structure(for pilot project) under environment of rain and wind. A shape of rain water blocking systems of joint part in sliding door verifies the defects and effects of water leakage prevention in precipitation with the wind conditions. For obtaining watertightness of large span membrane structures, it is necessary quality of joints and performance, and quality of membrane material of a retractable roof as well as a closed roof. Also, for obtaining quality in joints, it is essential to make a watertightness guideline for design of large-span membrane.

  • PDF

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

A Study on the Evaluation of Watertightness Properties for Rain-Block System in the Sliding-Roof Joint of Large-Span Membrane Structures (개폐식 대공간 막 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Oh, Sang-Keun;Baek, Ki-Youl;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • This study is an evaluation of the water-tightness properties of rain-block systems in the sliding-roof joint of large-span membrane structures. In this study, we suggested a method of evaluating the water-tightness performance of the joint part of a sliding door in the roof of a large-span membrane structure (for a pilot project), in an environment of rain and wind. The shape of the rainwater blocking systems of the joint part in a sliding door verifies the defects and the effects of water leakage prevention when there is precipitation with wind conditions. To secure the water-tightness of large span membrane structures, it is necessary to have a guideline on the evaluation of the design for rain-block system of the joint part, and the quality of the membrane material, both of a retractable roof and a closed roof.

Aerodynamics and Flight Control of Air Vehicle with Variable Span Morphing Wing (가변스팬 모핑날개를 가진 비행체의 공력특성 및 비행 제어)

  • Bae, Jae-Sung;Hwang, Jai-Hyuk;Park, Sang-Hyuk;Kim, Jong-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • In the aerospace field, the study on a morphing-wing is in progress to improve flight performance and perform multi flight mission. There are many concepts of morphing-wing such as camber-change, wing-twist, variable-span, and so on. In this study, the aerodynamic characteristics and flight control of an air vehicle with a variable-span morphing wing (VSMW) have been investigated. VSMW with symmetric span control(SSC) can increase cruising range of aircraft by reducing drag in various flight condition. VSMW with anti-symmetric span control(ASSC) can be used in the roll control of an aircraft. The flight control about pure rolling dynamic system and full dynamic system have been performed about the cruise missile.

Evaluation of Applicability of Sliding Carriage on the Membrane Retractable Roof under Vertical and Horizontal Load Considering the Inner Holder with Various Section Characteristics (다양한 단면성질의 Inner Holder를 고려한 연성 개폐식 Sliding Carriage의 수직 및 수평하중에 대한 적용성 평가)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Sliding carriage is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane moves roof, thus, structural behavior of sliding carriage, which may contain various shapes with friction coefficients, should be investigated by vertical load as well as horizontal load. Nummerical simulation of sliding carriage prototypes, in this research, were performed by incrementation of vertical load and horizontal load as well. Consequently, this paper evaluated proper shapes of inner holder of Sliding carriage and evaluated the effective contact area of inner hold.

Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges

  • Dai, Gonglian;Ge, Hao;Liu, Wenshuo;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • As a new type of ballastless track, longitudinal continuous slab track (CST) has been widely used in China. It can partly isolate the interaction between the ballastless track and the bridge and thus the rail expansion device would be unnecessary. Compared with the traditional track, CST is composed of multi layers of continuous structures and various connecting components. In order to investigate the performance of CST on a long-span bridge, the spatial finite element model considering each layer of the CST structure, connecting components, bridge, and subgrade is established and verified according to the theory of beam-rail interaction. The nonlinear resistance of materials between multilayer track structures is measured by experiments, while the temperature gradients of the bridge and CST are based on the long-term measured data. This study compares the force distribution rules of ballasted track and CST as respectively applied to a long span bridge. The effects of different damage conditions on CST structures are also discussed. The results show that the additional rail stress is small and the CST structure has a high safety factor under the measured temperature load. The rail expansion device can be cancelled when CST is adopted on the long span bridge. Beam end rotation caused by temperature gradient and vertical load will have a significant effect on the rail stress of CST. The additional flexure stress should be considered with the additional expansion stress simultaneously when the rail stress of CST requires to be checked. Both the maximum sliding friction coefficient of sliding layer and cracking condition of concrete plate should be considered to decide the arrangement of connecting components and the ultimate expansion span of the bridge when adopting CST.

The Case Study on the Erection Method of Large Span Structures (대공간 건축물 Erection 공법에 관한 사례 조사 연구)

  • Jung, Hwan-Mok;Lee, Seong-Yeun;Jee, Suck-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.97-104
    • /
    • 2007
  • Recently, the demand of the large span structures has been increasing. The large span structures include such a large scaled structures such as: the shell structure, the space frame structure, the membrane structure and the cable structure, etc. The large span structures are supposed to be confirmed and issued carefully at the initial process of the design besides the construction engineering aspects because of the structural specific cause that should solve and accomodate those large and wide space without columns. In the field of the large span structure construction, the erection construction method has been regarded as a major affected aspects on the construction cost, construction term, and stability. In the field of the large span structure construction, there are various construction method and system could be applied depends on the condition of the construction site and other circumstances such a major construction method as: the element method, the block method, the sliding method, the lift-up method and complexed method, etc. In this study, as the case study of the erection construction method of the large span structures, after survey and study that those existing large span structures construction cases which had applied and adopted the election construction method and analysis and classify into the Uoups by the size, span, ceiling height, structural system in odor to supply and suggest the data for the enhancement and development in the field of the erection construction method as a efficient structural solution of the large span structure construction.

  • PDF

Structural Stability Estimation of Non-slip Steel Grating (미끄럼 방지용 금속 그레이팅의 구조적 안정성 평가)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.501-507
    • /
    • 2021
  • In this study, In order to prevent the safety accidents caused by the sliding, to develop the non-slip grating, the stability judgment based on the span length of the grating and the gap of the bearing bar is performed. The structural analysis of Grating was carried out in accordance with the provisions set out in Grating's load-bearing test conditions. As the span length increases, the deflection increases and the stress and span length tend to be proportional to each other. It was shown that the larger the span, the linear increase in stress and exponential increase in deformation of grating. The maximum stress of grating was approximately 58.2 MPa, indicating a very stable safety rate of about 4.3 compared to the yield strength of the grating material. Based on these results, it will be able to be utilized as the basic data for determining the optimal dimensions of non-slip grading by performing optimal designs in the future.

Prediction of the Shear Strength of FRP Strengthened RC Beams (I) - Development and Evaluation of Shear strength model - (FRP로 전단 보강된 철근콘크리트 보의 전단강도 예측 (I) - 전단강도 예측 모델제안 및 검증 -)

  • Sim Jong-Sung;Oh Hong-Seob;Moon Do-Young;Park Kyung-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.343-351
    • /
    • 2005
  • This study developed a shear strength prediction model of FRP strengthened reinforced concrete beams in shear. The primary design parameters were shear crack angle and shear span to depth ratio of FRP reinforcement. Of primary concern In the suggested model was the FRP debonding failure, which Is a typical fracture mode of RC beams strengthened with FRP, The proposed model used a crack sliding model based on modified plasticity theory. To address the effect of the shear span to depth ratio, the arch action was considered in the proposed model. The proposed model was applied to RC beams strengthened with FRP. The results showed that the proposed model agree with test results.

Comparative Analysis of Track-Bridge Interaction of Sliding Slab Track and Rail Expansion Joint for Long-Span Railway Bridge (장경간 철도 교량에 적용된 슬라이딩 궤도와 레일신축이음장치의 궤도-교량 상호작용 비교)

  • Lee, Kyoung Chan;Jang, Seung Yup;Lee, Jungwhee;Choi, Hyun Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2016
  • Sliding slab track system, which consists of low friction sliding layer between track slab and bridge deck, is recently devised to reduce track-bridge interaction effect of continuously welded rail(CWR) without applying special devices such as rail expansion joint(REJ). In this study, a series of track-bridge interaction analyses of a long-span bridge with sliding slab track and REJ are performed respectively and the results are compared. The bridge model includes PSC box girder bridge with 9 continuous spans, and steel-concrete composite girder bridge with 2 continuous spans. The total length of the bridge model is 1,205m, and the maximum spacing between the two fixed supports is 825m. Analyses results showed that the sliding slab track system is highly effective on interaction reduction since lower rail additional axial stress is resulted than REJ application. Additionally, horizontal reaction forces in fixed supports were also reduced compared to the results of REJ application. However, higher slab axial forces were developed in the sliding slab track due to the temperature load. Therefore, track slab section of the sliding slab track system should be carefully designed against slab axial forces.