• Title/Summary/Keyword: sliding resistance

Search Result 323, Processing Time 0.031 seconds

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

A Study on the Development of Reinforced Earth wall by Geotextile (토목섬유를 이용한 보강토옹벽의 개발)

  • 도덕현;유능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.63-73
    • /
    • 1986
  • The model was developed by applying the principles of Bacot and Vidal to measure the behavior of deformation of the reinforced earth wall, and various tasts were performed by using the plastic fabric filter and the galvanized steel plate as a strip. The results obtained are as follows; 1. When the reinforced earth wall is deformed by the load, the strip is completely reinforced by the backfill materials and changed to the rigid block state, under the state of failure which permits sliding only, the next theoretical equation is formed. (H/L) . tan$\theta$ [cosO-sinOtanO] =2sinO[tan($\theta$ +0) +tanO] 2.The degree of the mutual reinforcement of the backfill material and the strip depend on the physical characteristics of the each material especially the angle of shearing resistance of the backfill material is desirable over 20$^{\circ}$ and, if it is over 400, its function could be a maximum. 3.The distribution of the maximum tensile strain of the reinforcement is changing with the height of reinforced earth wall, and when the height from bottom of the reinforced earth wall is 1.85 to 3. 35m, the maximum tensile strain appears at 2m from the skin element. The maximum tensile strain is increased by the depth of the reinforced earth wall from surface, and increased with the lapse of time after construction. 4.The failure surface of the reinforced earth wall by the concrete skin was about 60$^{\circ}$and the failure behavior of the reinforced earth wall in which the fabric filter was buried was slow, and so the pore pressure could be decreased. 5.It is possible to construct the fabric retained earth wall by the plastic fabric filter only. And the reinforcing effect between the steel plate and the plastic fabric filter is not largely different. however, in the aspect of the economic durability, the plastic fabric filter is more advantageous. 6.The reinforcing action mainly depends on the width and the length of the reinforcing materials, if possible, the full width is advantageous to enlarge the contact area with backfill. but considering the economic aspect, it is neccessary to develop the method controlling the space of the strip.

  • PDF

Effects of the Freeze-thaw Process on the Strength Characteristics of Soils (IV) -Insulation Performance beneath the Freezed Tested Banking by Inclusion of Insulation Material- (동결-융해작용이 흙의 강도특성에 미치는 영향 (IV) - 단열재를 삽입한 동결성토의 단열거동 -)

  • 유능환;박승범;유영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.39-46
    • /
    • 1990
  • This paper was analized the thermal conductivity of polystylene (TENSAR- GEOGRID) embeding into the subbase through frost penetration depth, frost heave, change of bearing capacity, and soil moisture movement due to freezing, thawing and icing actions, and their results were as follows : 1.The change of temperature into the sub-base was much increased by the Tensar-Geogrid insertion, and the frost penetration and frost heave were decreased as the thinner of the insulation thickness but the thawing velocity of melting period was appeared to be faster in case of non-insulated. 2.The frost heave had a close relationship with the thickness of insulations which was reasonably included anti-frost effects. 3.The moisture content during the freezing period of upper layer of the insulation insertion was increased by 15 per cent but it was returned to initial state of the thawing period, and at the down layer temporarily increased by 10 per cent and returned to the original state at once. 4.The insulation was acted as a function of distribution of surcharge, and the settlement of the sub-base was about 1.5 mm under 15 tonnage of load and which was included within the allowable limits. 5.The sliding resistance due to the icing which was induced by the insulation insertion into the sub-base was appeared as more 40 per cent than noninsulation area, so that the insulations should be restricted on the place such as mountains, curved and cross area which were required the braking power under the traffics.

  • PDF

Friction and Wear Characteristics of Plasma Coated Surface of Casting Aluminum Alloy (플라즈마 코팅한 주조용 알루미늄합금의 마찰 및 마멸특성)

  • Chae, Young-Hun;Ren, Jing-Ri;Park, Jun-Mock;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.791-799
    • /
    • 1997
  • The wear characteristics and wear mechanisms of plasma sprayed Al/sub 2/ O/sub 3/-40%TiO/sub 2/ and Cr/sub 2/O/sub 3/ deposited on casting aluminum alloy(AC4C) were investigated. Specimens were processed for various coating thicknesses. Ball on disk type wear tester was used for wear test. The scratch test on plasma sprayed coating surface showed that critical load to break the coating layer was greater than 40 N. The critical load increase with the increase of coating thickness of specimens. The friction coefficient of Cr/sub 2/O/sub 3/ coating layer was less than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. The wear resistance of Cr/sub 2/O/sub 3/ coating layer was greater than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. Microscopic observation of worn surfaces was made by SEM. SEM observation showed that the main mechanism of wear for Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer was abrasive wear under 50 N. For the case of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer, as the surface cracks perpendicular to sliding direction propagated, the wear debris was generated in wear track. However, the main mechanism of wear for Cr/sub 2/O/sub 3/ coating layer was brittle fracture under 150 N.

Influence of Coating Defect Ratio on Tribological Behavior Determined by Electrochemical Techniques (전기화학적 분석을 통해 산출된 코팅 결함율이 트라이볼로지적 특성에 미치는 영향 평가)

  • Lee Young-Ze;Kim Woo-Jung;Ahn Seung-Ho;Kim Ho-Gun;Kim Jung-Gu;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2004
  • Many of the current development in surface modification engineering are focused on multilayered coatings, which have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel in this study. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N,\;WC-Ti_{0.53}Al_{0.47}N,\;WC-Ti_{0.5}Al_{0.5}N\;and\;WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behaviors. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a normal load of 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball $(H_R\;=\;66) $ having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with energy-dispersive spectroscopy (EDS). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$coatings with increasing of Al (aluminum) concentration.

Estimation of Reliability Level and Applicability of LRFD Based on Standard Drawings of Railway Cantilever Retaining Walls (철도 옹벽 표준도의 신뢰도수준 및 LRFD 적용성 평가)

  • Kim, In-Soo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.61-76
    • /
    • 2015
  • Recently, geotechnical engineering researches have been conducted on the Limit State Design (LSD) for deep and shallow foundations; however, there are very few studies on the retaining wall. As a basic study for the introduction of the LSD of a railway retaining wall, this study evaluates whether the reliability index satisfies the target reliability index for each failure mode in the standard drawing of the retaining wall. It also analyzes the feasibility of the LSD method by using the Load and Resistance Factor Design (LRFD) for the standard drawing of a retaining wall. In a portion of the standard drawing of the railway retaining wall, the reliability indices of the sliding and bearing capacity failure modes did not satisfy the target reliability index, and could not satisfy the limit state by the LRFD. Hence, the standard drawing of the railway retaining wall will need to be revised if the LSD is to be applied.

Wear Properties of Nuclear Graphite IG-110 at Elevated Temperature (원자력용 흑연 IG-110 에 대한 고온 마모 특성 평가)

  • Wei, Dunkun;Kim, Jaehoon;Kim, Yeonwook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.469-474
    • /
    • 2014
  • The high temperature gas-cooled reactor (HTR-10) is designed to produce electricity and hydrogen. Graphite is used as reflector, support structures, and a moderator in reactor core; it has good resistance to neutron and is a suitable material at high temperatures. Friction is generated in the graphite structures for the core reflector, support structures, and moderator because of vibration from the HTR-10 fuel cycle flow. In this study, the wear characteristics of the isotropic graphite IG-110 used in HTR-10 were evaluated. The reciprocating wear test was carried out for graphite against graphite. The effects of changes in the contact load and sliding speeds at room temperature and $400^{\circ}C$ on the coefficient of friction and specific wear rate were evaluated. The wear behavior of graphite IG-110 was evaluated based on the wear surfaces.

Numerical Evaluation of the Influence of Joint Roughness on the Deformation Behavior of Jointed Rock Masses (절리면의 거칠기 특성이 정리암반의 거동에 미치는 영향에 대한 수치해석적 연구)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • The roughness of rock joint is one of the most important parameters in developing the shear resistance and the tendency of dilation. Due to the damage accumulated with shearing displacement, the roughness angle is lowered continuously. It is known that dilation, shear strength hardening, and softening are directly related to the degradation of asperities. Much effort has been directed to incorporate the complicated damage mechanism of asperities into a constitutive model fur rock joints. This study presents an elasto-plastic formulation of joint behavior including elastic deformability, dilatancy and asperity surface damage. It is postulated that the plastic portion of incremental displacement 7an be decomposed into contributions from both sliding along the asperity surface and damage of asperity. Numerical cyclic shear tests are presented to illustrate th? performance of the derived incremental stress-displacement relation. A laboratory cyclic shear test is also simulated. Numerical examples reveal that the elasto-plastic joints model is promising.

  • PDF

A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type (사판식 유압 피스톤 펌프의 응력해석에 관한 연구)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2424-2429
    • /
    • 2015
  • In an oil hydraulic piston pump, the cylinder block and valve plate in high speed relative sliding motion have the characteristics which should be extremely controlled for the optimization of leakage and friction losses, and pressure-resistance design of them is very important for high pressure performance. But the studies on the stress analysis of those parts have not been performed briskly. Therefore, in this paper, the stress and displacement distributions of the cylinder block and valve plate in the oil hydraulic piston pump with a swash plate type are discussed through the static stress analysis using CATIA V5. The stress and displacement of the cylinder block are more influenced by the axial pressure than by the radial pressure, and are larger by approximately 66% and 30%, respectively. The results show that a review of the material and shape of the valve plate is required.

Effect of Laser Surface Hardening Factors on the Wear Resistance of Medium Carbon Low Alloy Steel Surface-hardened by Using CO2 Laser Technique (CO2 레이저 표면경화처리된 중탄소 저합금강의 내마모 특성에 미치는 레이저 표면경화 인자의 영향)

  • Park, K.U.;Roh, Y.S.;Han, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.2
    • /
    • pp.122-132
    • /
    • 1992
  • This study has been performed to investigate into some effects of the power density and traverse speed of laser beam on the optical microstructure, hardness and wear characteristics of medium carbon low alloy steel treated by laser surface hardening technique. The results obtained from the experiment are summarized as follows : (1) Optical micrograph has shown that finer lath martensite is formed and the amount of undissolved complex carbides increases as the traverse speed increases under the condition of a given power density, whereas the coarsening of lath martensite and the reduction of undissolved complex carbides occur with increasing the power density at a given traverse speed. (2) Hardness measurements have revealed that as the traverse speed increases, hardness values of outermost surface layer more of less decrease under low power densities, but are uniformly distributed under high power densities, also showing that they are uniformly distributed at low traverse speeds and more or less decrease at high traverse speeds with increasing the power density. (3) The effective case depth has been found to decrease from 0.26 mm to 0.17 mm with increasing the traverse speed from 1.5 m/min to 3.0 m/min at a given power density of $25.48{\times}10^3w/cm^2$ and to increase from 0.20 mm to 0.36 mm with increasing the power density from $19.11{\times}10^3w/cm^2$ to $38.22{\times}10^3w/cm^2$ at a given traverse speed of 2.0 m/min. (4) Wear test has exhibited that the amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load increases with increasing traverse speed at a given power density and decreses with increasing power density at a given traverse speed.

  • PDF