• Title/Summary/Keyword: sliding friction tester

Search Result 71, Processing Time 0.023 seconds

A Study on Thermal Deformation Volume of Motorcycle Brake Disk using Regression Analysis (회귀분석에 의한 모터싸이클 브레이크 디스크의 열변형량에 관한 연구)

  • Ryu, Mi-Ra;Byoun, Sang-Min;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.102-107
    • /
    • 2009
  • The thermal deformation volume of motorcycle break disk was studied using a disk-on-pad type friction tester. Thermal deformation volume of motorcycle break disk have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal deformation volume. In this study, the thermal deformation volume with ANSYS workbench are obtained by application of temperature from mechanical test. From this study, the result was shown that the motorcycle break disk with ventilated hole 3 have the most excellent thermal deformation characteristics. The regression equation with frictional factors which have a trust rate of 95% for prediction of thermal deformation volume of motorcycle break disk was composed.

A Study on Thermal Analysis of Motorcycle Brake Disk (모터싸이클 브레이크 디스크의 열 해석에 관한 연구)

  • Ryu, Mi-Ra;Kim, Young-Hee;Byon, Sang-Min;Park, Heung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2009
  • The effect of frictional factors on thermal stress and deformation volume of motorcycle brake disk was studied by using a disk-on-pad type friction tester. It has an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, thermal stress and deformation volume by using design of experiment with 4 elements were investigated for thermal analysis with regression analysis. Thermal stress and thermal deformation are obtained by the application of temperature from mechanical test. From this study, the result showed that the motorcycle brake disk with ventilated hole 3 had the most excellent thermal stress and deformation volume. The regression equation had a trust rate of 95% for the prediction of thermal stress and deformation volume of motorcycle brake disk was composed.

  • PDF

A Study on Thermal Stress Analysis of Motorcycle Disk Brake (모터싸이클 브레이크 디스크의 열응력 해석에 관한 연구)

  • Ryu, Mi-Ra;Moon, Sung-Dong;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.308-314
    • /
    • 2008
  • The thermal stress have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal stress of motorcycle break disk. For this, temperature of motorcycle break disk is measured using a disk-on-pad type friction tester with full factorial design containing above 4 elements. and the thermal stress analysis of it was carried out using with ANSYS workbench. From this study, the result was shown that the regression equation which have a trust rate of 95% for thermal stress presumption of motorcycle break disk with frictional factor was composed. It is possible to apply for another automobile parts.

A Study on Friction Characteristics for Motorcycle Disk Using Taguchi Experimental Design (다꾸지 기법에 의한 이륜자동차 브레이크 디스크의 마찰특성에 관한 연구)

  • Juen, H.Y.;Ryu, M.R.;Lee, S.J.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • The effect of manufacturing parameters on wear and improve cooling of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the wear and improve cooling factor such as applied load, sliding speed, frictional time and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factor. In this study, the wear and cooling characteristics using design of experiment containing 4 elements were investigated for an optimal condition for the best motorcycle disk break system employing Taguchi robust experimental design. From this study, the result was shown that vents have an effect on convection area improving more cooling ability and reduced wear of the disk.

  • PDF

Design Improvement of Carrier Finger on Sheet Metal Forming Line for the Prevention of Scratch (판재 스크래치 저감을 위한 제관 라인 이송 핑거 접촉부의 설계 개선)

  • Lee, Min;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.240-245
    • /
    • 2012
  • In this study, we developed a new carrier finger to prevent scratches in a sheet metal forming line. The developed carrier finger was designed to have a streamlined shape with a larger radius of curvature at the edges, as well as a smaller contact area. To evaluate the scratch alleviation effect, a sliding contact analysis and scratch test using the pin on a plate wear tester were conducted for both the old and new carrier fingers. The results show that, for both transverse and longitudinal movements of the strip, the newly designed carrier finger reduces both the friction and scratch depth by its streamlined shape, which decreases the pressure spike at the edge.

The Effects of Surface Porfiles and Coatings on the Tribological Behaviors of the Surfaces of Piston Skirt (피스톤 스커트 표면의 트라이볼로지 거동에 미치는 표면형상과 코팅의 영향)

  • Cho, Dae-Hyun;Chung, Soon-Oh;Won, Young-Duck;Han, Man-Cheol;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.122-128
    • /
    • 2008
  • To reduce the friction losses and the wear amounts in the piston assembly two methods were proposed. One is the modification of surface profile of the skirt part. The surface coating is another method to protect the sliding surfaces. To modify the profile of the skirt surfaces the surfaces were ground to have three different shapes of profiles. Also, several coatings, such as graphite, TiN, and $MoS_2$, and DLC, were used to protect the surfaces of the piston skirts. The specimens of the skirt and the cylinder bores were tested with the reciprocating wear tester. SAE 5W40 engine oil was used in boundary lubrication regime. Among several coatings the graphite and DLC coatings were very effective to reduce the friction forces. Especially, DLC film represented much better tribological performances than the others. The friction coefficient of the graphite coating was the lowest, but the graphite coating was not effective to protect the surfaces.

Wear behaviors of HVOF spray coating of Co-alloy T800

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Park, Bong-Kyu;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • HVOF thermal spray coating of Co-alloy T800 is progressively replacing the classical hard coatings such as chrome plating because of the very toxic $Cr^{6+}$ ion known as carcinogen causing lung cancer. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied for the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$ are drastically reduced compared to those of non-coated surface of parent substrate Inconel 718. This study shows that the coating is recommendable for the durability improvement coatings on the surfaces vulnerable to frictional heat. The sliding surfaces are weared by the mixed mechanisms such as oxidative wear, abrasion by the sliding ball slurry erosion by the mixture of solid particles and small drops of the melts and semi-melts of the attrited particles cavitation by the relative motions among the coating, sliding ball, the melts and semi-melts. and corrosive wear. The oxide particles and the melts and semi-melts play roles as solid and liquid lubricant reducing the wear and friction coefficient.

The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics (윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성)

  • Hong, Seok-June;Lee, Kwang-Hee;Lim, Hyun-Woo;Kim, Jae-Woong;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.

Tribological Characteristics of Magnetron Sputtered MoS$_2$ films in Various Atmospheric Conditions

  • Kim, Seock-Sam;Ahn, Chan-Wook;Kim, Tae-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1065-1071
    • /
    • 2002
  • The friction and wear behaviors of magnetron sputtered MoS$_2$ films were investigated through the use of a pin and disk type tester. The experiments were performed for two kinds of specimens (ground (Ra 0.5 $\mu\textrm{m}$) and polished (Ra 0.01 $\mu\textrm{m}$) substrates) under the following operating condifions : linear sliding velocities in the range of 22~66 mm/s (3 types), normal loads varying from 9.8~29.4 N(3 types) and atmospheric conditions of air, medium and high vacuum (3types). Silicon nitride pin was used as the lower specimen and magnetron sputtered MoS$_2$ on bearing steel disk was used as the upper specimen. The results showed that low friction property of the MoS$_2$ films could be identified in high vacuum and the specific wear rate in air was much higher than that in medium and high vacuum due to severe oxidation. It was found that the main wear mechanism in air was oxidation whereas in high vacuum accumulation of plastic flow and adhesion, were the main causes of wear.

Tribological Characteristics of Phosphorated Starch Based Electrorheological Fluid (인산화 전분 ER 유체의 트라이볼로지 특성)

  • Jang, Min-Gyu;Lee, Chul-Hee;Choi, Jea-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • This experimental study presents tribological characteristics under boundary lubrication contacts associated with electrorheolocal (ER) fluid. ER fluid is prepared by using phosphorated starch particles and silicone oil. Experimental apparatus of tribological tester is designed and constructed to evaluate tribological characteristics of pin specimens. Wear tests under boundary lubrication of ER fluid are experimentally performed under consideration of several operational factors such as normal load, sliding distance, sliding speed and specimen materials: steel, copper and aluminum. After wear test, microscopic surface changes of the worn pin specimens are analyzed in order to investigate measured wear characteristics by using the scanning electron microscope (SEM) as well as surface profilometer. In addition, the chemical wear characteristics are investigated by using energy dispersive x-ray spectroscopy (EDS). Moreover, friction coefficient measurements under different materials of pin specimens are conducted for the tribological investigations. In order to verify the effect of starch phosphate particles in ER fluid, the wear test results with ER fluid are compared with test results with only silicone oil. The results clearly present that the phosphorated starch based ER fluid shows the stabilized wear as well as friction characteristics after run-in operations, but the wear rate under ER fluid is increased.