• 제목/요약/키워드: sliding friction tester

검색결과 71건 처리시간 0.025초

Friction and Wear Properties of Boron Carbide Coating under Various Relative Humidity

  • Pham Duc-Cuong;Ahn Hyo-Sok;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • 제6권2호
    • /
    • pp.39-44
    • /
    • 2005
  • Friction and wear properties of the Boron carbide ($B_{4}C$) coating 100 nm thickness were studied under various relative humidity (RH). The boron carbide film was deposited on silicon substrate by DC magnetron sputtering method using $B_{4}C$ target with a mixture of Ar and methane ($CH_4$) as precursor gas. Friction tests were performed using a reciprocation type friction tester at ambient environment. Steel balls of 3 mm in diameter were used as counter-specimen. The results indicated that relative humidity strongly affected the tribological properties of boron carbide coating. Friction coefficient decreased from 0.42 to 0.09 as the relative humidity increased from $5\%$ to $85\%$. Confocal microscopy was used to observe worn surfaces of the coating and wear scars on steel balls after the tests. It showed that both the coating surface and the ball were significantly worn-out even though boron carbide is much harder than the steel. Moreover, at low humidity ($5\%$) the boron carbide showed poor wear resistance which resulted in the complete removal of coating layer, whereas at the medium and high humidity conditions, it was not. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses were performed to characterize the chemical composition of the worn surfaces. We suggest that tribochemical reactions occurred during sliding in moisture air to form boric acid on the worn surface of the coating. The boric acid and the tribochemcal layer that formed on steel ball resulted in low friction and wear of boron carbide coating.

The properties and wear behavior of HVOF spray coating layer of Co-alloy powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • 한국결정성장학회지
    • /
    • 제16권6호
    • /
    • pp.273-277
    • /
    • 2006
  • High velocity of oxy-fuel (HVOF) thermal spray coating is progressively replacing the other classical hard coatings such as chrome plating and ceramic coating by the classical methods, since the very toxic $Cr^{6+}$ ion is well known as carcinogen causing lung cancer, and the ceramic coatings are brittle. Co-alloy T800 powder is coated on the Inconel 718 substrates by the HVOF coating procesess developed by this laboratory. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester with a counter sliding SUS 304 ball both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied far the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $538^{\circ}C$ are drastically reduced compared to those of non-coated surface of Inconel 718 substrates. Wear traces and friction coefficients of both coated and non-coated surfaces are drastically reduced at a high temperature of $538^{\circ}C$ compared with those at room temperature. These show that the coating is highly recommendable far the durability Improvement coating on the surfaces vulnerable to frictional heat and wear.

마모 상대재 변화에 따른 TiN 극박막의 마찰 및 마모거동 (Friction and Wear Behavior of Ultra-Thin TiN Film during Sliding Wear against Alumina and Hardened Steel)

  • 송명훈;이재갑;김용석
    • 한국재료학회지
    • /
    • 제10권1호
    • /
    • pp.62-68
    • /
    • 2000
  • Reactive DC magnetron sputtering 법으로 AISI 304 스테인레스강 기판 위에 TiN 극박막을 50nm∼700nm 두께로 증착한 후, 경화된 AISI 52100 강과 알루미나를 마모 상대재로 하여 박막의 미끄럼마모 시험을 상온 대기 중에서 행하고, 마모 상대재에 따른 TiN 극박막의 마찰과 마모 거동을 연구하였다. AISI 52100 강구를 마모 상대재로 한 경우, TiN 박막은 200g 이하의 마모 하중과 0.035m/sec의 낮은 미끄럼 속도 조건에서 500nm 내외의 극박으로도 마찰계수가 0.1 내외로 유지되는 우수한 내마모성을 보였다. 이같이 우수한 내마모성은 AISI 52100 강으로부터 천이된 Fe가 산화되어 TiN 박막 표면에 Fe 산화층을 형성한 때문으로 설명되었다. 그러나, 마모 상대재를 알루미나 볼로 한 경우에는 TiN 박막 위에 산화층이 형성되지 않고, 마모가 거의 되지 않는 알루미나 볼과 박막층 사이에 국부적 응력집중 등이 발생하여 시험된 전 조건 하에서 박막층의 박리 현상이 관찰되었고 높은 마찰계수가 측정되었다. 또한 기판의 평균 표면조도, Ra가 박막의 두께와 유사할 때 마찰계수가 급격히 상승하는 현상이 관찰되었다.

  • PDF

표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구 (An investigation of tribology properties carbon nanotubes reinforced epoxy composites)

  • 아부바카 빈 술렁;곽정춘;박주혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

식물잎의 표면형상 및 마이크로-스케일에서의 마찰 특성 (Surface Characteristics and Micro-Scale Friction Property of Natural Surface)

  • 윤의성;김홍준;아르빈드싱;김진석
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.237-242
    • /
    • 2006
  • Surfaces found in nature, including biological surfaces have been providing inspiration to modify/fabricate artificial surfaces as solutions for tribological applications. As an example, the concept of 'lotus-effect' has motivated tribologists world wide to modify/fabricate surfaces for enhanced tribological performance. These was done by creating nano/micro-scale asperities on various surfaces using ion beam milling and ion-beam assisted roughening. In order to understand the attributes of natural surfaces, which are inspirational to tribologists, we characterized the surface of two natural surfaces-Nelumbo nucifera (lotus) and Colocasia esculenta leaves. Further, we evaluated their micro-scale friction property, both in their fresh and dried conditions. The characterization of surfaces was conducted using a confocal microscope and SEM, which involved the evaluation of size and distribution of protuberances. The micro-scale friction property was evaluated using a ball-on-flat type micro-tribo tester, under reciprocating motion. A soda lime glass ball (2 mm diameter) was used in these tests. Tests were conducted at the applied normal load of $3000{\mu}N$, at a sliding speed of 1 mm/sec for a scan length of 3 mm. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C}$) and relative humidity ($45{\pm}5%$). It was observed that the friction behaviour of the natural surfaces was influenced by their surface characteristics (morphology and distribution of protuberances) and also by the condition (fresh or dried) in which they were tested.

윤활유 중지 마멸입자의 프랙탈 형상특징 추출 방법 (Extraction of Fractal Shape Characteristics of Wear Particles in Lubricant)

  • 박흥식;우규성;조연상;김동호;예규현
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.276-281
    • /
    • 2006
  • The fractal dimension is quantitatively to define the irregular characteristic of the shape in natural. It can be useful in describing morphological characteristics of various wear particles. This paper was undertaken to diagnose failure condition for sliding members in lubrication by fractal dimension. It will be possible to diagnose wear mechanism, friction and damage state of machines through analysis of shape characteristics for wear particle on driving condition by fractal parameters. In this study, the calculating and analyzing methods of fractal dimensions were constructed for the condition monitoring and wear particle analysis in lubricant condition. So, we carried out the Friction and wear test with the ball on disk type tester, and the fractal parameters of wear particle in lubricated conditions were calculated. Fractal parameters were defined as texture fractal dimension ($D_{t}$), structure fractal dimension ($D_{s}$) and total fractal dimension (D).

플라즈마 용사용 산화크롬/몰리브덴 복합분말 제조와 용사코팅의 마찰.마멸 특성 (Fabrication of Cr$_2$O$_3$/Mo Composite Powders and Tribological Properties of Plasma-sprayed Coatings)

  • 여인웅;안효석;김충현
    • Tribology and Lubricants
    • /
    • 제15권2호
    • /
    • pp.184-192
    • /
    • 1999
  • Various compositions of$ Cr_2$$O_3$/Mo composite powders were fabricated using spray-drying method and plasma-spray coatings of these powders were prepared to understand their tribological properties. Experiments were conducted using a reciprocal type tribo-tester at room temperature under dry sliding condition. The worn surface of coated specimens were observed using SEM (Scanning Electron Microscopy) and chemical compositions were analyzed using XRD (X-ray Diffractometry) and XPS (X-ray Photoelectron Spectroscopy). The results showed that friction coefficient of the Mo added specimens were lower than that of $Cr_2$$O_3$specimen. However $Cr_2$$O_3$specimen showed the lowest wear loss. Wear protecting layer were observed at the worn surface of coated specimens with Mo addition. From the XPS analysis, the mixed phases of $Cr_2$$O_3$ $CrO_3$and $MoO_3$were founded in the wear protecting layer.

Magnetron Sputtering법에 의해 증착한 MoS$_2$ 박막의 고진공하에서의 트라이볼로지적 특성 (Tribological characteristics of sputtered MoS$_2$films with Magnetron Sputtering Method in High Vacuum)

  • 안찬욱;김석삼;이상로
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.406-413
    • /
    • 2000
  • The friction and wear behaviors of Magnetron Sputtered MoS$_2$films were investigated by using a pin on disk type tester which was designed and manufactured for this experiment. The experiment was conducted by using silicon nitride (Si$_3$N$_4$) as a pin material and Magnetron Sputtered MoS$_2$on bearing steel (STB2) as a disk material, under operating conditions that include different surface roughness (Polishing specimen, Grinding specimen)(2types), linear sliding velocities in the range of 22, 44, 66mm/sec (3types), normal loads vary from 9.8N, 19.6N, 29.4N(3types), corresponding to contact pressures of 1.9∼2.7GPa and atmospheric conditions of high vacuum( 1.3${\times}$10$\^$-4/Pa), medium vacuum( 1.3${\times}$10$\^$-l/Pa), ambient air(10$\^$5/Pa)(3types). We investigated fracture mechanism in magnetron sputtered MoS$_2$films with Magnetron Sputtering method in each experiment.

  • PDF

Free Silicon 함량에 따른 Si-SiC 복합재료의 마찰 마모 특성 (Effect of the Amount of Free Silicon on the Tribological Properties of Si-SiC)

  • 김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제31권5호
    • /
    • pp.520-528
    • /
    • 1994
  • An investigation was carried out to understand the effect of the amount of free silicon on the tribological properties of Si-SiC. The specimens of dense Si-SiC composites with various amount of free silicon were fabricated in the temperature of 175$0^{\circ}C$ after molding under various pressure. Wear properties were measured by ball-on-plate wear tester under the constant weight of 4 Kgf at constant sliding speed of 500 mm/sec in water. As the result, the Rockwell hardness and fracture strength of Si-SiC composites remained nearly constant up to 16.62 vol% of free silicon in the Si-SiC microstructure. The Si-SiC composites containing the free silicon of 16.62 vol% was considered to be prominent in the tribological properties, which had the friction coefficient of 0.08 and the specific wear rate of 2.4$\times$10-8$\textrm{mm}^2$Kgf-1. The analysis of the wear surface indicated the complicated processes occuring on the surface such as fine polishing, abrasion, microfracture.

  • PDF

Comparison of Three Different Slip Meters under Various Contaminated Conditions

  • Kim, Jung-Soo
    • Safety and Health at Work
    • /
    • 제3권1호
    • /
    • pp.22-30
    • /
    • 2012
  • Objectives: To challenge the problem of slipperiness, various slipmeters have been developed to assess slip hazard. The performance of in-situ slipmeter is, however, still unclear under the various floor conditions. The main objectives of this study were to evaluate the performance of three kinds of slipmeters under real conditions, and to find their dynamic and kinematic characteristics, which were compared with gait test results. Methods: Four common restaurant floor materials were tested under five contaminants. Slipmeters and human gaits were measured by high speed camera and force plate to find and compare their dynamic and kinematic characteristics. Results: The contact pressures and built-up ratio were below those of subjects. The sliding velocity of British Pendulum Tester was above those of subjects, while those of BOT-3000 and English XL were below those of subjects. From the three meters, the English XL showed the highest overall correlation coefficient (r = 0.964) between slip index and $R_a$, while the rest did not show statistical significance with surface roughness parameters ($R_a$, $R_z$). The English XL only showed statistical significance (p < 0.01) between slip index and contaminants. The static coefficient of friction obtained with the BOT-3000 showed good consistency and repeatability (CV < 0.1) as compared to the results for the BPT (CV > 0.2) and English XL (CV < 0.2). Conclusion: It is unclear whether surface roughness can be a reliable and objective indicator of the friction coefficient under real floor conditions, and the viscosity of contaminants can affect the friction coefficient of the same floors. Therefore, to evaluate slipperiness, the performance of the slipmeters needed to improve.