• Title/Summary/Keyword: slice patch

Search Result 17, Processing Time 0.023 seconds

GABAA Receptor- and Non-NMDA Glutamate Receptor-Mediated Actions of Korean Red Ginseng Extract on the Gonadotropin Releasing Hormone Neurons

  • Cho, Dong-Hyu;Bhattarai, Janardhan Prasad;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Korean red ginseng (KRG) has been used worldwide as a traditional medicine for the treatment of various reproductive diseases. Gonadotropin releasing hormone (GnRH) neurons are the fundamental regulators of pulsatile release of gonadotropin required for fertility. In this study, an extract of KRG (KRGE) was applied to GnRH neurons to identify the receptors activated by KRGE. The brain slice patch clamp technique in whole cell and perforated patch was used to clarify the effect of KRGE on the membrane currents and membrane potentials of GnRH neurons. Application of KRGE (3 ${\mu}g$/${\mu}L$) under whole cell patch induced remarkable inward currents (56.17${\pm}$7.45 pA, n=25) and depolarization (12.91${\pm}$3.80 mV, n=4) in GnRH neurons under high $Cl^-$ pipette solution condition. These inward currents were not only reproducible, but also concentration dependent. In addition, inward currents and depolarization induced by KRGE persisted in the presence of the voltage gated $Na^+$ channel blocker tetrodotoxin (TTX), suggesting that the responses by KRGE were postsynaptic events. Application of KRGE under the gramicidin perforated patch induced depolarization in the presence of TTX suggesting its physiological significance on GnRH response. Further, the KRGE-induced inward currents were partially blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA glutamate receptor antagonist, 10 ${\mu}M$) or picrotoxin (PIC; $GABA_A$ receptor antagonist, 50 ${\mu}M$), and almost blocked by PIC and CNQX mixture. Taken together, these results suggest that KRGE contains ingredients with possible GABA and non-NMDA glutamate receptor mimetic activity, and may play an important role in the endocrine function of reproductive physiology, via activation of $GABA_A$ and non-NMDA glutamate receptors in GnRH neurons.

Low Non-NMDA Receptor Current Density as Possible Protection Mechanism from Neurotoxicity of Circulating Glutamate on Subfornical Organ Neurons in Rats

  • Chong, Wonee;Kim, Seong Nam;Han, Seong Kyu;Lee, So Yeong;Ryu, Pan Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.177-181
    • /
    • 2015
  • The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate ($60{\sim}100{\mu}M$), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate ($100{\mu}M$) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p<0.05). To further identify the subtype of the glutamate receptors involved, the whole cell currents induced by selective agonists were then compared. The current densities induced by AMPA (0.45 pA/pF) and kainate (0.83 pA/pF), non-NMDA glutamate receptor agonists in SFO neurons were also smaller than those in hippocampal CA1 neurons (2.44 pA/pF for AMPA, p<0.05; 2.34 pA/pF for kainate, p< 0.05). However, the current density by NMDA in SFO neurons was not significantly different from that of hippocampal CA1 neurons (1.58 vs. 1.47 pA/pF, p>0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.

Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons (랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도)

  • Han, Seong-kyu;Park, Jin-bong;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

Modulation of Neural Circuit Actvity by Ethanol in Basolateral Amygdala

  • Chung, Leeyup
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Ethanol actions in the amygdala formation may underlie in part the reinforcing effects of ethanol consumption. Previously a physiological phenomenon in the basolateral amygdala (BLA) that is dependent on neuronal network activity, compound postsynaptic potentials (cPSPs) were characterized. Effects of acute ethanol application on the frequency of cPSPs were subsequently investigated. Whole cell patch clamp recordings were performed from identified projection neurons in a rat brain slice preparation containing the amygdala formation. Acute ethanol exposure had complex effects on cPSP frequency, with both increases and decreases dependent on concentration, duration of exposure and age of the animal. Ethanol produces complex biphasic effects on synaptically-driven network activity in the BLA. These findings may relate to subjective effects of ethanol on arousal and anxiolysis in humans.

Isolation and Electrical Characterization of the Rat Spinal Dorsal Horn Neurons (랫드 척수후각 단일세포 분리 및 특성에 관한 연구)

  • Han, Seong-Kyu;Ryu, Pan-Dong
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.283-292
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region. In this study, single neurons of the spinal dorsal horn were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by patch clamp technique. Transverse slice ($(300{\mu}m$) of lumbar spinal cords from young rats$(7{\sim}14\;days)$ were sequentially treated with two pretenses(pronase 0.75 mg/ml and thermolysin 0.75 mg/ml), then single neurons were mechanically dissociated. These neurons showed near-intact morphology such as multipolar, ellipsoidal and bipolar, and pyramidal cells and we recorded the typical whole cell currents of $K^+$, $Ca^{2+}$ and ligand-operated channels from these neurons. Glutamate $(30{\mu}M)$ and N-methyl-D-aspartate(NMDA, $30{\mu}M)$ induced inward currents of $117{\pm}12.4$ pA(n=5) and $49{\pm}6.9$ pA(n=3), respectively. Glycine $(1{\mu}M)$ potentiated glutamate-induced currents $4{\sim}5$ times and NMDA-induced currents $8{\sim}10$ times. In addition, glycine $(30{\mu}M)$ induced Inward current ($31{\pm}6.1$ nA, n=2), which was rapidly desensitized after the peak to a new steady-state level. However, the inward currents induced by ${\gamma}-amino$ butyric acid(GABA, $1{\mu}M$) decreased continuously after the peak($226{\pm}41.6$ pA, n=3) under the similar experimental condition. The ionic currents and pharmacological responses of isolated neurons in this work were similar to those observed in vivo or in vitro spinal cord slice, indicating that acutely isolated neurons could be effectively used for further pharmacological studies.

  • PDF

Involvement of Crosstalk Between cAMP and cGMP in Synaptic Plasticity in the Substantia Gelatinosa Neurons

  • Kim, Tae-Hyung;Chung, Ge-Hoon;Park, Seok-Beom;Chey, Won-Young;Jun, Sung-Jun;Kim, Joong-Soo;Oh, Seog-Bae
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • Substantia gelatinosa (SG) neurons receive synaptic inputs from primary afferent $A{\delta}$- and C-fibers, where nociceptive information is integrated and modulated by numerous neurotransmitters or neuromodulators. A number of studies were dedicated to the molecular mechanism underlying the modulation of excitability or synaptic plasticity in SG neurons and revealed that second messengers, such as cAMP and cGMP, play an important role. Recently, cAMP and cGMP were shown to downregulate each other in heart muscle cells. However, involvement of the crosstalk between cAMP and cGMP in neurons is yet to be addressed. Therefore, we investigated whether interaction between cAMP and cGMP modulates synaptic plasticity in SG neurons using slice patchclamp recording from rats. Synaptic activity was measured by excitatory post-synaptic currents (EPSCs) elicited by stimulation onto dorsal root entry zone. Application of 1 mM of 8-bromoadenosine 3,5-cyclic monophosphate (8-Br-cAMP) or 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) for 15 minutes increased EPSCs, which were maintained for 30 minutes. However, simultaneous application of 8-BrcAMP and 8-Br-cGMP failed to increase EPSCs, which suggested antagonistic cross-talk between two second messengers. Application of 3-isobutyl-1-methylxanthine (IBMX) that prevents degradation of cAMP and cGMP by blocking phosphodiesterase (PDE) increased EPSCs. Co-application of cAMP/cGMP along with IBMX induced additional increase in EPSCs. These results suggest that second messengers, cAMP and cGMP, might contribute to development of chronic pain through the mutual regulation of the signal transduction.

Mechanism of Glutamate-induced $[Ca^{2+}]i$ Increase in Substantia Gelatinosa Neurons of Juvenile Rats

  • Jung, Sung-Jun;Choi, Jeong-Sook;Kwak, Ji-Yeon;Kim, Jun;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.53-57
    • /
    • 2003
  • The glutamate receptors (GluRs) are key receptors for modulatory synaptic events in the central nervous system. It has been reported that glutamate increases the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) and induces cytotoxicity. In the present study, we investigated whether the glutamate-induced $[Ca^{2+}]_i$ increase was associated with the activation of ionotropic (iGluR) and metabotropic GluRs (mGluR) in substantia gelatinosa neurons, using spinal cord slice of juvenile rats (10${\sim}21 day). $[Ca^{2+}]_i$ was measured using conventional imaging techniques, which was combined with whole-cell patch clamp recording by incorporating fura-2 in the patch pipette. At physiological concentration of extracellular $Ca^{2+}$, the inward current and $[Ca^{2+}]_i$ increase were induced by membrane depolarization and application of glutamate. Dose-response relationship with glutamate was observed in both $Ca^{2+}$ signal and inward current. The glutamate-induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV was blocked by CNQX, an AMPA receptor blocker, but not by AP-5, a NMDA receptor blocker. The glutamate-induced $[Ca^{2+}]_i$ increase in $Ca^{2+}$ free condition was not affected by iGluR blockers. A selective mGluR (group I) agonist, RS-3,5-dihydroxyphenylglycine (DHPG), induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV in SG neurons. These findings suggest that the glutamate-induced $[Ca^{2+}]_i$ increase is associated with AMPA-sensitive iGluR and group I mGluR in SG neurons of rats.

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.209-216
    • /
    • 2018
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.

Fluoxetine Modulates Corticostriatal Synaptic Transmission through Postsynaptic Mechanism

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Cho, Young-Jin;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Fluoxetine, widely used for the treatment of depression, is known to be a selective serotonin reuptake inhibitor (SSRI), however, there are also reports that fluoxetine has direct effects on several receptors. Employing whole-cell patch clamp techniques in rat brain slice, we studied the effects of fluoxetine on corticostriatal synaptic transmission by measuring the change in spontaneous excitatory postsynaptic currents (sEPSC). Acute treatment of rat brain slice with fluoxetine ($10{\mu}M$) significantly decreased the amplitude of sEPSC ($8.1{\pm}3.3$%, n=7), but did not alter its frequency ($99.1{\pm}4.7$%, n=7). Serotonin ($10{\mu}M$) also significantly decreased the amplitude ($81.2{\pm}3.9$%, n=4) of sEPSC, but did not affect its frequency ($105.8{\pm}8.0$, n=4). The effect of fluoxetine was found to have the same trend as that of serotonin. We also found that the inhibitory effect of fluoxetine on sEPSC amplitude ($93.0{\pm}1.9$%, n=8) was significantly blocked, but not serotonin ($84.3{\pm}1.6$%, n=4), when the brain slice was incubated with p-chloroamphetamine ($10{\mu}M$), which depletes serotonin from the axon terminals and blocks its reuptake. These results suggest that fluoxetine inhibits corticostriatal synaptic transmission through postsynaptic, and that these effects are exerted through both serotonin dependent and independent mechanism.

Spontaneous Electrical Activity in Cerebellar Purkinje Neurons of Postnatal Rats

  • Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.355-366
    • /
    • 1997
  • Although cerebellar Purkinje cells display spontaneous electrical activity in vivo and in slice experiments, the mechanism of the spontaneous activity generation has not been clearly understood. The aim of this study was to investigate whether cerebellar Purkinje cells of postnatal rats generate spontaneous electrical activity without synaptic inputs. Dissociated cerebellar Purkinje cells were used for reducing synaptic inputs in the present study. Cerebellar Purkinje cells with dendrites were dissociated from postnatal rats using enzymatic treatment followed by mechanical trituration. Spontaneous electrical activities were recorded from dissociated cells without any stimulus using whole-cell patch clamp configuration. Two types, spontaneously firing or quiescent, of dissociated Purkinje cells were observed in postnatal rats. Both types of cells were identified as Purkinje cells using immunocytochemical staining technique with anti-calbindin after recording. Spontaneously active cells displayed two patterns of firing, repetitive and burst firings. Two thirds of dissociated Purkinje cells displayed repetitive firing and the rest of them did burst firing under same recording condition. Repetitive firing activities were maintained even after further isolation using either physical or pharmacological techniques. Neither high magnessium solution nor excitatory synaptic blockers, AP-5 and DNQX, block the spontaneous activity. These results demonstrate that spontaneous electrical activity of isolated cerebellar Purkinje cells in postnatal rats is generated by intrinsic membrane properties rather than synaptic inputs.

  • PDF