• 제목/요약/키워드: slender columns

검색결과 125건 처리시간 0.017초

Numerical investigation of SHS steel beam-columns strengthened using CFRP composite

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.593-601
    • /
    • 2017
  • Carbon Fiber Reinforced Polymer (CFRP) is one of the materials used to strengthen steel structures. Most studies on strengthening steel structures have been done on steel beams and steel columns. No independent study, to the researcher's knowledge, has studied the effect of CFRP strengthening on steel beam-columns, and it seems that there is a lack of understanding on behavior of CFRP strengthening on steel beam-columns. However, this study explored the use of adhesively bonded CFRP flexible sheets on retrofitting square hollow section (SHS) steel beam-columns, using numerical investigations. Finite Element Method (FEM) was employed for modeling. To determine the ultimate load of SHS steel beam-columns, ten specimens, eight of which were strengthened with the different coverage length and with one and two CFRP layers, with two types of section (Type A and B) were analyzed. ANSYS was used to analyze the SHS steel beam-columns. The results showed that the CFRP composite had no similar effect on the slender and stocky SHS steel beam-columns. The results also showed that the coverage length, the number of layers, and the location of CFRP composites were effective in increasing the ultimate load of the SHS steel beam-columns.

Axial compressive strength of short steel and composite columns fabricated with high stength steel plate

  • Uy, B.
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.171-185
    • /
    • 2001
  • The design of tall buildings has recently provided many challenges to structural engineers. One such challenge is to minimise the cross-sectional dimensions of columns to ensure greater floor space in a building is attainable. This has both an economic and aesthetics benefit in buildings, which require structural engineering solutions. The use of high strength steel in tall buildings has the ability to achieve these benefits as the material provides a higher strength to cross-section ratio. However as the strength of the steel is increased the buckling characteristics become more dominant with slenderness limits for both local and global buckling becoming more significant. To arrest the problems associated with buckling of high strength steel, concrete filling and encasement can be utilised as it has the affect of changing the buckling mode, which increases the strength and stiffness of the member. This paper describes an experimental program undertaken for both encased and concrete filled composite columns, which were designed to be stocky in nature and thus fail by strength alone. The columns were designed to consider the strength in axial compression and were fabricated from high strength steel plate. In addition to the encased and concrete filled columns, unencased columns and hollow columns were also fabricated and tested to act as calibration specimens. A model for the axial strength was suggested and this is shown to compare well with the test results. Finally aspects of further research are addressed in this paper which include considering the effects of slender columns which may fail by global instabilities.

A numerical procedure for reinforced concrete columns with a focus on stability analysis

  • Pires, Susana L.;Silva, Maria Cecilia A.T.
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.657-674
    • /
    • 2014
  • The purpose of this paper is to present a numerical procedure to analyse reinforced concrete columns subjected to combined axial loads and bending that rigorously considers nonlinear material and nonlinear geometric characteristics. Column design and stability analysis are simultaneously regarded. A finite element method is used for calculating displacements and the material and geometric nonlinearities are taken into account using an iterative process. A computer program is developed from the proposed numerical procedure, and the efficiency of the program is verified against available experimental data. The model applies to constant rectangular cross sectional columns with symmetric reinforcement distribution.

편심축하중을 받는 구속 RC장주의 거동 해석 (Behavior Analysis of Eccentrically Loaded Restrained Reinforced Concrete Slender Columns)

  • 박재운;정경희
    • 대한토목학회논문집
    • /
    • 제10권4호
    • /
    • pp.11-24
    • /
    • 1990
  • 본 연구는 RC 뼈대구조물의 실제적인 단부경계조건을 고려한 RC 기둥에 대한 인접부재의 강성을 비선형 거동과 부합시켜 해석하였으며, 인접부재의 단부구속 효과를 고려한 편심축하중을 받는 장주의 극한강도와 거동을 해석하기 위한 해석모델을 정립하여 반복법을 이용한 수치적분법에 의하여 1차로 이론 해석을 하였다. 그리고, 계속 RC 기둥의 극한강도와 거동에 영향을 주는 매개변수를 해석모델을 이용 연구하고져 한다.

  • PDF

Strength of biaxially loaded high strength reinforced concrete columns

  • Dundar, Cengiz;Tokgoz, Serkan
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.649-661
    • /
    • 2012
  • An experimental research was conducted to investigate the strength of biaxially loaded short and slender reinforced concrete columns with high strength concrete. In the study, square and L-shaped section reinforced concrete columns were constructed and tested to obtain the load-deformation behaviour and strength of columns. The test results of column specimens were analysed with a theoretical method based on the fiber element technique. The theoretical ultimate strength capacities and the test results of column specimens have been compared and discussed in the paper. Besides this, observed failure mode and experimental and theoretical load-lateral deflection behaviour of the column specimens are presented.

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

중심축하중을 받는 구속철근콘크리트 장주의 극한강도해석 (Ultimate Strength Analysis of Restrained Reinforced Concrete Slender Columns Under Concentric Load)

  • 박재윤;김진성
    • 전산구조공학
    • /
    • 제4권1호
    • /
    • pp.121-132
    • /
    • 1991
  • 본 연구는 철근콘크리트 뼈대구조물의 실제적인 단부경계조건을 고려한 철근콘크리트 기둥에 대한 인접부재의 강성을 비선형거동과 부합시켜 해석하고, 인접부재의 단부구속효과를 고려한 중심축하중을 받는 장주의 극한강도를 해석하고저 해석모델을 정립하여 보-기둥의 2차강성매트릭스 해석법에 의하여 이론적으로 해석하는데 있다.

  • PDF

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제6권6호
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

A numerical method for buckling analysis of built-up columns with stay plates

  • Djafour, M.;Megnounif, A.;Kerdal, D.;Belarbi, A.
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.441-457
    • /
    • 2007
  • A new numerical model based on the spline finite strip method is presented here for the analysis of buckling of built-up columns with and without end stay plates. The channels are modelled with spline finite strips while the connecting elements are represented by a 3D beam finite element, for which the stiffness matrix is modified in order to ensure complete compatibility with the strips. This numerical model has the advantage to give all possible failure modes of built-up columns for different boundary conditions. The end stay plates are also taken into account in this method. To validate the model a comparative study was carried out. First, a general procedure was chosen and adopted. For each numerical analysis, the lowest buckling loads and modes were calculated. The basic or "pure" buckling modes were identified and their critical loads were compared with solutions obtained using analytical methods and/or other numerical methods. The results showed that the proposed numerical model can be used in practice to study the elastic buckling of built-up columns. This model is considered accurate and efficient for the local buckling of short columns and global buckling for slender columns.

Simplified Design Procedure for Reinforced Concrete Columns Based on Equivalent Column Concept

  • Afefy, Hamdy M.;El-Tony, El-Tony M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.393-406
    • /
    • 2016
  • Axially loaded reinforced concrete columns are hardly exist in practice due to the development of some bending moments. These moments could be produced by gravity loads or the lateral loads. First, the current paper presents a detailed analysis on the overall structural behavior of 15 eccentrically loaded columns as well as one concentrically loaded control one. Columns bent in either single curvature or double curvature modes are tested experimentally up to failure under the effect of different end eccentricities combinations. Three end eccentricities ratio were studied, namely, 0.1b, 0.3b and 0.5b, where b is the column width. Second, an expression correlated the decay in the normalized axial capacity of the column and the acting end eccentricities was developed based on the experimental results and then verified against the available formula. Third, based on the equivalent column concept, the equivalent pin-ended columns were obtained for columns bent in either single or double curvature modes. And then, the effect of end eccentricity ratio was correlated to the equivalent column length. Finally, a simplified design procedure was proposed for eccentrically loaded braced column by transferring it to an equivalent axially loaded pin-ended slender column. The results of the proposed design procedure showed comparable results against the results of the ACI 318-14 code.