• Title/Summary/Keyword: sled test

Search Result 66, Processing Time 0.023 seconds

The Development of Robot System for Assessing Slip Resistance (미끄럼 저항 측정을 위한 로봇 시스템 개발)

  • Kim, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.1-4
    • /
    • 2013
  • The main objective was to design and develop a prototype robot system for assessing slip resistance. The developed robot system will be able to be used for stochastic nature of friction in the whole workplace. The second objective was to evaluate its operating condition in the laboratory, using a dreg sled type slipmeter(BOT-3000) as reference device. It was found that COF(Coefficient of Friction) measured with robot system was similar to that of BOT-3000 when sliding velocity was reached at 0.2m/s. The robot system might be the more promising one than any traditional measurement devices. A further evolution of prototype devices, as well as the development of test methods for that's various applications, is to be started in forthcoming studies.

Development of Inertial Locking Anti-G Buckle of A Seatbelt System With Pre-tensioner (프리텐셔너가 장착된 시트벨트 시스템의 관성잠김 안전버클 개발)

  • Tak, Tae-Oh;Kuk, Min-Gu;Kim, Dae-Hee;Park, Jae-Soon;Shin, Seung-Eon;Choi, Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.47-54
    • /
    • 2006
  • To improve passenger safety, seat belt systems with pre-tensioner that tightens seat belt webbing using explosive just before collision are widely used these days. Even though seatbelt must not unlatched without passengers' operation. explosive power of pre-tensioner can cause unlocking of a buckle. To prevent the unlocking, an anti-g mass that blocks displacement of the release button has been attached to the buckle. In this study, the dynamics and statics of locking mechanism associated with operation of anti-g buckle has been theoretically investigated, and important design variables that affect the operation of anti-g buckle have been identified. Through the total seat belt system's dynamic simulation using force and displacement inputs obtained from seat belt sled test, design of the proposed anti-g buckle has been validated.

  • PDF

Development of a Model for the Analysis of Occupant Response subjects in Low-Speed Rear-End Collision (저속 후방 추돌에 따른 승객 거동 현상 해석용 모델 개발)

  • 김희석;김영은
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.139-150
    • /
    • 2000
  • Although a number of neck injuries are generated, the data which quantify the kinematic response of the human head and cervical spine in low-speed rear-end automobile collisions is very limited. On this problem, just few in vitro experimental research or some experimental research using dummy on neck injury by rear-end collision was conducted, thus systematic research is requested on full scale injury mechanism. An occupant model for the response of the occupant subject to rear-end collision using commercial dynamics package DADS was developed. Developed model shows more close agreement with the experimental data compared with the MADYMO simulation results for the cases of ${\delta}V=16$ kph in sled test. For the case of ${\delta}V=8$ kph and 33.5 kph with production seat, model also shows its reliable response compared with experimental results using Hybrid III and Hybird III with RID.

  • PDF

Experiments of CRS for Safety Improvement (어린이보호용좌석 효과의 실험적 연구)

  • 이재완;박형원;윤경한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.79-85
    • /
    • 2003
  • The child restraint system is blown to be excellent to reduce child occupant injury in frontal collisions. The effects of the child restraint system are experimently investigated according to FMVSS 213. A sled simulator is utilized with varying restraint types such as 2point, 3point seat belts, forward-facing types and booster types of child restraint systems. The head and chest injuries for various cases are evaluated based on industrial standards. Also, the maximum displacements of the head and the knees are measured by film analysis. Using the results of the test, the effects of the child restraint system is discussed and reduction of child occupant injury is pursued.

Development of a Three Years Old Child Model for the Analysis of Child Occupant Response subjects in Frontal Collision (전방 충돌에 따른 유아 승객 거동을 위한 3세 유아 모델의 개발)

  • Kim, Yeong-Eun;Kim, Hui-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • In order to increase our understanding of the injury mechanism in the child occupant, three year old child model was developed using commercial dynamic package DADS. Total 14 segments and 12 joints were used to compose a model in three points belted condition with booster seat. HYGE sled test case was simulated to validate the developed model. Based on the comparison of the model and published test results, the developed model appears to be a resonable representation of the three year old dummy.

  • PDF

Correlation Analysis between Wheelchair Multi-layer Headrest Foam Properties and Injury Index (Wheelchair Multi-layer headrest foam 특성과 상해지수간 상관관계 분석)

  • Sungwook Cho;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2023
  • Although the development of transportation means has realized the right to mobility for the disabled who have difficulty in moving, it can be said that the improvement of the safety of passengers with disabilities that can occur in a car accident is lower than that of ordinary passenger seats. In particular, in the case of a rear-end collision that can occur suddenly, it is a reality that disabled passengers are vulnerable to head and neck injuries. Therefore, in this study, a multi-layer headrest foam that divides the headrest into three parts in the coronal plane was proposed to improve the head and neck injury index of disabled passengers in the vehicle in the event of a rear-end collision of a wheelchair transport vehicle. A range of stress scale factors was selected to give various compressive characteristics of the foam through low-speed rear-end collision analysis through a simple model, and GA optimization was performed by specifying the range as a parameter. Through the optimization result, the phase relationship between HIC and NIC was analyzed according to the compression characteristics of the layers. HIC responded most sensitively to the compression characteristics of the front layer and NIC responded to the compression characteristics of the mid layer, and the compression characteristics of the rear layer showed the lowest. A normal headrest and an optimized multi-layer headrest were placed in the validation model to analyze the low-speed rear-end collision sled test, and HIC and NIC were derived lower in the multi-layer headrest than in the general headrest. The compression behavior of the multi-layer headrest was also clearly shown, and it was verified that the multi-layer headrest was effective in improving the injury index of the head and neck compared to the general headrest.

A Study on the Improvement of Validation and Application for Slipmeters using Reference Surfaces (표준 바닥재를 이용한 미끄럼 측정기의 검증방법 개선 및 활용방안)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.73-78
    • /
    • 2013
  • The purpose of this study was to evaluate three kinds of slipmeters (BOT, BPT, English XL) used on-site floor with ASTM F2508 which is comprised of four different standard surfaces(polished granite, glazed porcelain, vinyl composite tile ;VCT, and ceramic tile). ASTM F2508 has two criteria that decide which slipmeter is appropriate or not. The evaluated slipmeters were dreg sled, articulated sturt, and pendulum strike type. The test results revealed that two kinds of slipmeters(BOT, BPT) successfully ranked all four standard surfaces and differentiated among standard surfaces with varying degrees of slipperiness. Nevertheless, the measured value with BOT on the VCT, which was reported as slippery floor in previous study, was higher than its threshold(0.6). Although some slipmeter satisfy two criteria of ASTM F2508, they can underestimate the slip potential. So, another criteria is needed so as to reduce this problem. English XL couldn't properly measure slipperiness under the two kind of floors(glazed porcelain, VCT). So the slider of English XL was modified in order to meet two criteria of ASTM F2508.

Dynamics Analysis and experiment verification of seatbelt system with pre-tensioner considering connection action of a human body (인체의 연계작용을 고려한 프리텐셔너를 가진 시트벨트 시스템의 동역학 해석 및 실험적 검증)

  • Kuk, Min-Gu;Tak, Tea-Oh;Park, Jae-Soon;Kim, Dae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1009-1014
    • /
    • 2007
  • To improve passenger safety, seatbelt systems with pre-tensioner that tightens seatbelt webbing using explosives just before collision are widely adopted. Even though seatbelt must not be unlatched without passenger's operation, release of a buckle due to explosion of pre-tensioner takes place in some situations resulting in serious injury to passengers. To prevent the unintended unlocking, a pendulum like part called anti-g mass is attached to the buckle to block displacement of release button. In this study, the unlocking conditions of anti-g buckle when pre-tensioner explodes has been theoretically investigated. Through multibody model of the seatbelt system incorporating every detailed part of the buckle, dynamic analysis of the seatbelt system with pre-tensioner has been performed including the driver's body model that interacts with seatbelt system. The simulations results has been validated through actual sled test with driver dummy and the seatbelt system.

  • PDF

Measurement Criteria for Drag-Sled Type Slip Resistance Tester Based on Human Gait and Slip (인간의 보행 및 미끄러짐 특성에 기반한 끌기형 미끄러짐 저항 측정 조건)

  • Park, Jae-Suk;Kwon, Hyuck-Myun;Oh, Whan-Sup
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.179-184
    • /
    • 2012
  • This study was performed to find out the measurement criteria of slip resistance from analysis of human gait and slips. Many kinds of slip resistance testers were developed based on mechanical friction testers. But, there are, as yet, no unambiguous slip resistance measurement methodologies and generally accepted safety criteria or safety thresholds for estimating slipping hazard exposures. Also, there are variety of measuring conditions between those testers. The measurement criteria should be tested within the range of human slipping conditions observed in biomechanical studies. It's results should clearly consider whether the devices reflect the human slipping conditions. In this study a dragsled type friction tester, which was constructed in accordance with ISO 15133 basically, was used. Test conditions were set in order to determine the range of measurement criteria. It is shown that drag velocity should be more than 1 m/s, acceleration be more than 10 $m/s^2$, contact time be less than 0.1sec, and contact pressure be within 350~400 kPa.

Shock Analysis of Optical Disk Drive Considering Rotational Effect (회전 효과를 고려한 광디스크 드라이브의 충격해석)

  • Lim, Seung-Ho;Park, No-Cheol;Park, Young-Pil;Hwang, Hyo-Kune;Seo,, Jeong-Kyo;Yoo, Seung-Hon;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.622-625
    • /
    • 2008
  • SIL-based optical disk drive will be promising candidate of next-generation storage devices. However, a near-field optical disk drive requires the robustness to external shock because of extremely small gap between SIL and media. Especially, high-level shock damages permanently to SIL and it makes difficulties in general application. To study the likelihood of failure, the shock analysis must be performed over all others. This research explores the dynamic characteristics of rotating disk through FEM which is compared to analytical solution and experimental modal analysis. We also develop the finite element model of an optical disk drive, which includes rubber mounts, sled base, rotating disk and pickup assembly, and simulate the shock response.

  • PDF