• Title/Summary/Keyword: slag blended concrete

Search Result 126, Processing Time 0.027 seconds

Carbon-capture Performance of foam Concrete Using Stainless Steel Slag (스테인리스 스틸 AOD 슬래그를 이용한 폼 콘크리트의 탄소포집 성능)

  • Kim, Byung Jun;Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • The purpose of this study is to investigate the mechanical and carbon-capture properties of foam concrete containing stainless steel argon oxygen decarbonization(AOD) slag. AOD slag was used as a binder, and foam concrete having a foaming ratio of 69 ± 0.5 % and a slurry density of 573.2 to 578.6 kg / ㎥ was produced. In order to examine the effect of carbonation, blended specimen was cured by two types : normal curing and CO2 curing. As a result of the experiment, the specimens incorporating AOD slag showed higher compressive strength than Plain after CO2 curing. According to the analysis of the image of foam concrete, it was confirmed that the ST30 has a lower total pore volume and average pore size than plain, resulting in high compressive strength. The SEM analysis confirmed the formation of calcite by carbonation of AOD slag. Through the thermogravimetric analysis, the increase of CO2 uptake was confirmed by the incorporation of AOD slag. Foam concrete has a higher porosity than normal concrete, so it is expected that carbon-capture performance can be improved by using a AOD slag.

A Study on the Rheology Properties of Cement Paste with Variation of Quantity and! Type of Mineral Admixture (광물혼화재의 종류별 함량에 따른 시멘트 페이스트의 유동 특성에 관한 연구)

  • 박춘근;노명현;김학연;이종필;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.107-113
    • /
    • 2003
  • The rheology properties of cement paste with variation of quantity and type of mineral admixture were investigated. The rheology of the paste was assessed by using a HAAKE Rotovisco(RT 20) rheometer having cylindrical serrate spindle. The results were as follows: The viscosity and the yield stress of cement paste were decreased by the only replacement of 10% BFS(blast furnace slag) or the only replacement of 30% FA(fly ash), whereas SF(silica fume) increased them as the replacement quantity was increased. Increasing the dosage of HRWR(high-range water reducer), the rheology properties were improved significantly in cement paste with the replacement of SF. In addition, rheology properties of two ingredient blended pastes, such as BFS(20%)-SF(5%), FA(20%)-SF(5%), were improved more than those of three ingredient blended paste, BFS(20%)-FA(20%)-SF(5%).

  • PDF

Strength loss contributions during stages of heating, retention and cooling regimes for concretes

  • Yaragal, Subhash C.;Warrier, Jishnu;Podila, Ramesh
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • Concrete suffers strength loss when subjected to elevated temperatures during an accidental event such as fire. The loss in strength of concrete is mainly attributed to decomposition of C-S-H gel and release of chemically bound water, which begins when the temperature exceeds $500^{\circ}C$. But it is unclear about how much strength loss occurs in different stages of heating, retention and cooling regimes. This work is carried out to separate the total strength loss into losses during different stages of heating, retention and cooling. Tests were carried out on both Ordinary Portland Cement (OPC) based concrete and Ground Granulated Blast Furnace Slag (GGBFS) blended concrete for $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ with a retention period of 1 hour for each of these temperature levels. Furnace cooling was adopted throughout the experiment. This study reports strength loss contribution during heating, retention and cooling regimes for both OPC based and GGBFS based concretes.

Hydration properties of cement pastes containing high-volume mineral admixtures

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.7 no.1
    • /
    • pp.17-38
    • /
    • 2010
  • This research aimed to investigate the influence of high-volume mineral admixtures (MAs), i.e., fly ash and slag, on the hydration characteristics and microstructures of cement pastes. Degree of cement hydration was quantified by the loss-on-ignition technique and degree of pozzolanic reaction was determined by a selective dissolution method. The influence of MAs on the pore structure of paste was measured by mercury intrusion porosimetry. The results showed that the hydration properties of the blended pastes were a function of water to binder ratio, cement replacement level by MAs, and curing age. Pastes containing fly ash exhibited strongly reduced early strength, especially for mix with 45% fly ash. Moreover, at a similar cement replacement level, slag incorporated cement paste showed higher degrees of cement hydration and pozzolanic reaction than that of fly ash incorporated cement paste. Thus, the present study demonstrates that high substitution rates of slag for cement result in better effects on the short- and long-term hydration properties of cement pastes.

Freeze-Thaw Resistance of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성)

  • 문한영;김성수;이승태;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.725-730
    • /
    • 2002
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 210 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The XRD, SEM and EDS analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Construction technology of the massive bottom slab placed by $23,000m^3$ concrete quantity ($23,000m^3$ 대용량 바닥스래브 콘크리트의 시공기술)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1035-1040
    • /
    • 2003
  • This research investigates the actual data and construction technology of the massive bottom slab placed by $23,000m^3$ concrete quantity in site of the in-ground type LNG receiving terminal having 20,000kl storage capacity. The purpose of this study is to determine the optimum mix design and control the actual concreting procedures including concrete production, transportation, placement, vibrating and curing in site. For this purpose, the optimum mix design using ternary blended cement(furnace slag cement+fly ash) and under piping method having 11 gates and 7 distributors are selected. As test results of actual construction, concrete placement is finished during 68hours with good success and obtained the good quality of the fresh and hardened concrete including slump, air contents, no-segregation, compressive strength and low hydration heat. Also, actual data for all of concrete procedures are proved successful and satisfied with our specifications.

  • PDF

Freeze-Thaw Resistance and Void Characteristic of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성 및 공극특성)

  • Kim, Seong-Soo;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.589-592
    • /
    • 2006
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 300 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The MIP analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Mechanical Properties of Ultra High Strength Concrete Using Ternary Blended Cement (3성분계 혼합시멘트를 사용한 초고강도 콘크리트의 역학적 특성)

  • Kim, Jin Bong;Shin, Ki Su;Park, Ki Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.56-62
    • /
    • 2012
  • The results presented in this paper form part of an investigation into the optimization of a ternary blended cementitious system based on ordinary Portland cement (OPC)/blast furnace slag(BFS)/fly ash(FA) for the development of ultra high strength concrete. Concrete covering a wide range of BFS/FA blending proportions were investigated. Compressive strength at the ages of 3, 7 and 28 days for concrete specimens containing 0%, 10%, 20% and 30%FA along with 0%, 30%, 40% and 50%BFS as partial cement replacement at a water-binder ratio of 0.18 were investigated. Tests on porosity and pore size distribution were conducted using mercury intrusion porosimetry. The results show that the combination of FA10 and BFS30 can improve both short- and long-term properties of concrete as results of reducing of pores larger than 50nm.

Comparative Study on the Properties of Concrete Using Several Types of Cement (시멘트의 종류에 따른 콘크리트 특성비교 연구)

  • 송용순;강석화;한정호;구교준;김상철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.161-166
    • /
    • 1998
  • The main object of this study is to examine the basic properties of fresh concrete as well as hardened concrete using several types of cement such as ordinary portland cement, sulphate resisting portland cement, blast furnace slag cement, ternary blended cement. In addition, effects of each cement on the durability including drying shrinkage, freeze-thawing resistance, resistance of chloride ion penetration, carbonation of concrete were investigated. As the results of this study, it was proved that most of the properties of concrete using each cement were similar, but there were some differences in bleeding, setting time, resistance of chloride ion penetration and carbonation.

  • PDF