• Title/Summary/Keyword: slabs and plates

Search Result 74, Processing Time 0.024 seconds

Vibration Analysis of Plates with Openning about Variation Ratio (변단면률의 변화에 대한 개구부를 갖는 판의 진동해석)

  • Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1177-1180
    • /
    • 2007
  • This paper has the objects of deciding dynamic instability regions of thick plates by finite element method and providing kinematic design data for mats and slabs of building structures. In this paper, dynamic stability analysis of tapered opening thick plate is done by use of Serendipity finite element with 8 nodes considering shearing strain of plate. To verify this finite element method, buckling stress and natural frequencies of thick pate with or without in-plane stress are compared with existing solutions. The results are as follow that this finite element solutions with $4{\times}4$ meshes are shown the error of maximum 0.56% about existing solutions, and obtained dynamic instability graph according with variation of opening positions.

  • PDF

Natural Frequency of Elastic Supported Building Slab (탄성지지된 복합재료 상판의 고유 진동수)

  • 김덕현;이정호;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.215-222
    • /
    • 1997
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. This method has been developed for two-dimensional problems including the laminated composite plates and was proved to be very effective for the plates with arbitrary boundary conditions and irregular sections. In this paper, the result of application of this method to the subject problem is presented. This problem represents the building slabs with a kind of passive and active control devices. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

Span-to-Depth Ratio Equation for Reinforced Concrete Floor Members (콘크리트 바닥부재 설계를 위한 최소두께 산정식 제안)

  • Lee, Young-Hak;Chung, Kwang-Ryang;Choi, Bong-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • A single span-to-depth ratio function is proposed for control of deflection in one-way concrete construction. The equation can be applied to one-way slabs, beams, and flat plates. Effects of cracking, time-dependent deformation, boundary conditions, applied loading, and target deflection-to-span ratio are taken into account.

  • PDF

The Effect on Neglecting the Longitudinal Moment Terms in a Composite Liminate Plate with Stacking Sequence and Fiber Orientation (적층형태 및 보강방향에 따른 복합적층판의 종방향 모멘트 무시효과)

  • Lee, Bong-hak;Lee, Jung-ho;Hong, Chang-Woo;Kim, Kyung-Jin
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.97-105
    • /
    • 1998
  • The most of the design engineers for construction has academic background of bachelors degree. Theories for advanced composite structures are too difficult for such engineers and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. Such plates behave as special orthotropic plates and simple formulas developed by the author can be used. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

  • PDF

Moment Magnifier Method for Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.211-216
    • /
    • 2000
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As the result, the creep factor was developed to epitomizes with creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples are shown for verification of proposed design method.

  • PDF

Structural Behavior of Composite Liminate Bridge Deck Considering a Girder Stiffness (Girder의 강성을 고려한 복합 재료 교량 상판의 구조 거동)

  • Park, Je-Sun;Lee, Jung-Ho;Won, Chi-Moon;Shim, Do-Sik
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.107-115
    • /
    • 1998
  • Many of the bridge and building floor systems, including the girders and cross-beams, also behave a similar special orthotropic plates. Such plates are subject to the concentrate masses in the form of traffic loads, or the test equipments such as the accelerator in addition to their own masses. Analysis of such problems is usually very difficult. Most of the bridge slabs on girders have large aspect ratios. Finite difference method is used for this purpose, in this paper. The result is compared with that of the beam theory.

  • PDF

Lateral stiffness of reinforced concrete flat plates with steps under seismic loads

  • Kim, Sanghee;Kang, Thomas H.K.;Kim, Jae-Yo;Park, Hong-Gun
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.891-906
    • /
    • 2014
  • The purpose of this study is to propose a modification factor to reflect the lateral stiffness modification when a step is located in flat plates. Reinforced concrete slabs with steps have different structural characteristics that are demonstrated by a series of structural experiment and nonlinear analyses. The corner at the step is weak and flexible, and the associated rotational stiffness degradation at the corner of the step is identified through analyses of 6 types of models using a nonlinear finite element program. Then a systematic analysis of stiffness changes is performed using a linear finite element procedure along with rotational springs. The lateral stiffness of reinforced concrete flat plates with steps is mainly affected by the step length, location, thickness and height. Therefore, a single modification factor for each of these variables is obtained, while other variables are constrained. When multiple variables are considered, each single modification factor is multiplied by the other. Such a method is verified by a comparative analysis. Finally, a complex modification factor can be applied to the existing effective slab width.

Free Vibration Analysis of Stiffened Tapered Thick Plates with Concentrated Masses (집중질량을 갖는 변단면 보강 후판의 자유진동해석)

  • Lee, Yong-Soo;Kim, Il-Jung;Oh, Soog-Kyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.828-837
    • /
    • 2009
  • Recently, as high-rise buildings increase steeply, sub-structures of them are often supported on elastic foundation(in a case of pasternak foundation or winkler foundation). And there are many machines in sub-structures of buildings and slabs of sub-structures are affected by vibration which they make. This paper deals with vibration of plates on elastic foundation. Machines on plates are considered as concentrated mass. This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Free vibration analysis that tapered thick plate with Concentrated Masses in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on pasternak foundation. The Winkler parameter is varied with 10, $10^2$, $10^3$ and the shear foundation parameter is 5, 10. This paper is analyzed varying thickness by taper ratio. The taper ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0. And the Concentrated Mass is applied as P1, Pc, P2 respectively.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

The Effect of Neglecting the Longitudinal Moment Terms in Analyzing Composite Laminate Plates (복합적층판 해석시 종방향 모멘트 무시효과)

  • Han, Bong-Koo;Baek, Jong-Nam
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.25-29
    • /
    • 2011
  • Some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the senior author. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms(Mx) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.