• Title/Summary/Keyword: slab waveguide

Search Result 67, Processing Time 0.024 seconds

Field Analysis of Periodically Slotted Waveguide Structures Excited by an Aperiodic Source (주기적으로 slot가 있는 도파관 복사계의 전자계해석)

  • Kim, Young-Cho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.131-148
    • /
    • 1986
  • A field ploblem of a grounded dielectric slab covered by a conducting plane with periodecally spaced arbitrary number of slots excited by an aperiodis source is analyzed. The problem is formulated in terms of simultaneous integral equations for unknown electric fields at each slot. A sampling technique is introduced to reduce the system equations to a matrix equation equation involving Green's function matrix. The solution obtained in the form of infinite series is transformed, into a more rapidly convergent one in its final stage. Theoretical results agree closesly with the experimental results.

  • PDF

Design of Optical Filter with Multilayer Slab/Fiber Structure (다층 슬랩-광섬유접속구조를 갖는 광필터의 설계)

  • Jeoung, Chan-Gwoun;Kang, Young-Jin;Kim, Sun-Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1369-1375
    • /
    • 2007
  • The recent, a large capacity of telecommunication networks is required in order to it is in proportion to capacity of information communication increase and to satisfy a demand because of the demand about Internet, a multimedia service of internet, Video of internet protocol(VoIP), Audio/Video streaming. As a result, DWDM(Dense Wavelength Division Multiplexing)technologies are emerging to be a prevailing the method of solving it without additional optical fiber network building and high-speed equipment. Therefore this thesis proposed the optical filter of fiber/multilayer slab coupled structure combining it to multilayer slab waveguide by polishing the cladding of one side of fiber to design the optical filter having these functions. When a separation distance of fiber and slab was $3{\mu}m$, The optical filter proposed as the simulation result was satisfied with a DWDM filter characteristic with FWHM of 0.1nm on TM mode and TE mode as 32nm polarization independence in a communication window of $1.3{\mu}m$ when center wavelength was each ${\lambda}_0=1.274755{\mu}m$ and ${\lambda}_0=1.30591{\mu}m$.

  • PDF

Maximum Coupling Through a Narrow Slit in a Short-Ended Parallel-plate Waveguide with a Nearby Conducting Strip (단락종단된 평행평판 도파관의 좁은 슬릿을 통한 근접 도체스트립과의 최대 결합)

  • Lee, Jong-Ik;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.12
    • /
    • pp.15-21
    • /
    • 2000
  • In this study, the electromagnetic coupling through a narrow slit in the upper wall of a short-ended parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab Is considered for the case that the TEM wave is incident in the PPW. Coupled integral equations whose unknowns are the slit electric field and the induced electric current over the strip are derived and solved numerically by use of the method of moments. From results, it has been observed that most of the incident power can be coupled exterior to the guide by appropriately setting the strip width and position, though the slit is very narrow. In addition, the differences between the radiation phenomena, observed in the cases that the conducting strip and the upper Plate of the PPW form a cavity and that strip behaves like a parasitic element, are discussed.

  • PDF

The Analysis of Light Coupling and Propagation for The Composite Fiber-Dielectric Slab with a Conductor Cladding Using The Three Dimensional Finite Difference-Beam Propagating Method (3차원 FD-BPM을 이용한 측면 연마된 광섬유와 완전도체면 아래의 유전체 사이에서의 결합과 전파 특성의 해석)

  • 권광희;송재원;이동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.754-762
    • /
    • 2003
  • The coupled and propagated property of the composite side-polished fiber and infinite planar waveguide with conductor cladding (PWGCC) is presented by using the 3-D finite difference beam propagating method (FD-BPM) in according to the variety of refractive indexes between the fiber and the infinite planar waveguide. It is also introduced for the technique to be applied at and consisted of the analysis domain of 3-D FD-BPM for the coupling between the side-polished fiber and PWG. It is also compared the properties of coupling between the side-polished fiber and PWGCC with them of the general symmetric and asymmetric PWG without perfect conductor (PEC), which has been investigated by many researcher.

The Analysis of tight Coupling and Propagation for a Composite Fiber-Dielectric Slab with a Conductor Cladding

  • Kwon, Kwang-Hee;Song, Jae-Won;Kim, Jeong-Hoon;Park, Euy-Don;Son, Seok-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • A theoretical presentation of evanescent coupling is offered with respect to the refractive indexes between a side-polished optical fiber and an infinitely planar waveguide with a conductor cladding (PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with the perfect conductor (PEC) on one side. The behavior of the distributed couple. is examined using a coupled mode model, which takes account of the two dimensions of the waveguide configuration. The coupling and propagation of light were found to depend on both the relationship between the refractive index values of each structure and the configuration of the side-polished fiber used in the PWGCC. The spreading of light in the unconfined direction of the PWGCC is described in terms of a simple geometrical interpretation of the synchronization condition that is in agreement with a previous investigation of the problem based on the coupled-mode theory (CMT). The power of the light propagation in the fiber decreased exponentially along the fiber axis as it was transferred to the PWGCC, where it was carried away.

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Investigation of a nonreciprocal phase shift properties of optical waveguide isolators with a magneto-optic layer (자기 광학적층을 갖는 광 도파로 아이솔레이터 제작을 위한 비가역적 위상변위에 대한 연구)

  • Yang, Jeong-Su;Kim, Young-Il;Byun, Young-Tae;Woo, Deok-Ha;Lee, Seok;Kim, Sun-Ho;Yi, Jong-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.142-145
    • /
    • 2003
  • The nonreciprocal phase shift characteristics of infinite slab optical waveguides with magneto-optic materials in the cladding layer was calculated at 1.55 ${\mu}{\textrm}{m}$ for optical isolators. The infinite slab waveguide structures considered in this paper were as follows. rho magneto-optic materials used as a cladding layer were Ce:YIG and LNB(LuNdBi)$_3$(FeAl)$_{5}$)$_{12}$,). Their specific Faraday rotations Θ$_{F}$ are 4500$^{\circ}$/cm, 500$^{\circ}$/cm at wavelength 1.55 ${\mu}{\textrm}{m}$ respectively. The guiding layer with multi-quantum well structure was used, and it consists of 1.3Q and InGaAs. In order to investigate the effect of evanescent field penetrating the cadding, layer, guiding mode characteristics were calculated for the cases when the substrate is InP and air. We calculated the minimum lengths of 90$^{\circ}$ nonreciprocal phase shifters and their optimum guiding layer thicknesses in various optical waveguide structures.res.s.

Surface Plasmon Modes Confined in the Gap Between Metal Nanowire and Dielectric Slab (유전체 판과 금속 나노선 사이에 구속된 표면 플라즈몬 모드)

  • Hahn, Chol-Oong;Oh, Cha-Hwan;Song, Seok-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.269-275
    • /
    • 2011
  • We propose a metal-dielectric hybrid waveguide structure consisting of a single metal nanowire placed on a flat dielectric slab. Mode size and propagation loss of the surface-plasmons confined in the metal-dielectric gap are compared with those of the complementary structure with a dielectric nanowire on a metal surface. In the case of the nanowire's diameter much smaller than the wavelength the two structures reveal quite different characteristics; the dielectric nanowire-on-metal has longer propagation distance, but only the metal nanowire-on-dielectric exhibits a mode size two fold smaller than the diffraction limit. The proposed hybrid structure may therefore be more suitable for realization of nanocavity lasers.

Long-Range Surface-Plasmons Excited on Double-Layered Metal Waveguides (이중-금속 장거리 표면-플라즈몬 도파로)

  • Joo, Yang-Hyun;Jung, Myong-Jin;Song, Seok-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • We propose a novel metal-waveguide structure for sustaining long-range surface-plasmon-polaritons (LRSPP). The LRSPP waveguides are composed basically of two asymmetric metal layers: a very thin, finite-width metal strip on top of a metal slab with a dielectric gap in between them. Mode cut-off of LRSPPs excited on the double-metal waveguides is characterized by consistently investigating their dispersion relations and mode profiles. We also confirm experimentally the existence of low-loss, well-confined LRSPP modes by measuring far-field outputs emerging from an edge of the asymmetric double-metal waveguides. In the experiment, we have fabricated several types of SPP waveguide devices including straight lines, S-bend, and Y-branch consisting of gold strips (20 nm-thick, $5{\mu}m$-wide). Overall propagation loss of the proposed double-metal waveguides is quite comparable to that of single metal-strip waveguides, in addition the mode sizes can be tuned by increasing the core-insulator gap between the metal layers to get a higher coupling efficiency with a single-mode fiber in telecom wavelength. The proposed LRSPP waveguides may open up realization of SPP-waveguide sensors or nonlinear SPP-devices by replacing the core-insulator with a bio-fluid or a nonlinear medium.

Study of the optical switching properties in waveguide type Au/$SiO_2$ nanocomposite film using prism coupler (프리즘 커플러를 이용한 도파로형 Au/$SiO_2$ 나노 혼합박막의 광 스위칭 특성 연구)

  • Cho, Sung-Hun;Lee, Soon-Il;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.76-76
    • /
    • 2008
  • The resonance properties due to the surface plasmon(SP) excitation of metal nanoparticles make the nanocomposite films promising for various applications such as optical switching devices. In spite of the well-known ultra-sensitive operation of optical switches based on a guided wave, the application of nanocomposite film(NC) has inherent limitation originating from the excessive optical loss related with the surface plasmon resonance(SPR). In this study, we addressed this problem and present the experimental and theoretical analysis on the pump-probe optical switching in prism-coupled Au(1 vol.%):$SiO_2$ nanocomposite waveguide film. The guided mode was successfully generated using a near infrared probe beam of 1550 nm and modulated with an external pump beam of 532 nm close to the SPR wavelength. We extend our approach to ultra-fast operation using a pulsed laser with 5 ns pulse width. To improve the switching speed through the reduction in thermal loading effect accompanied by the resonant absorption of pump beam light, we adopted a metallic film as a coupling layer instead of low-index dielectric layer between the high-index SF10 prism and NC slab waveguide. We observed great enhancement in switching speed for the case of using metallic coupling layer, and founded a distinct difference in origin of optical nonlinearities induced during switching operation using cw and ns laser.

  • PDF