• Title/Summary/Keyword: slab thickness

Search Result 369, Processing Time 0.034 seconds

Development of Phantom and Comparison Analysis for Performance Characteristics of MOSFET Dosimeter (MOSFET 선량계 특성분석을 위한 팬톰 개발 및 특성 비교)

  • Chung, Jin-Beom;Lee, Jeong-Woo;Kim, Yon-Lae;Lee, Doo-Hyun;Choi, Kyoung-Sik;Kim, Jae-Sung;Kim, In-Ah;Hong, Se-Mie;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.48-54
    • /
    • 2007
  • This study is to develope a phantom for MOSFET (Metal Oxide Semiconductors Field Effect Transistors) dosimetry and compare the dosimetric properties of standard MOSFET and microMOSFET with the phantom. In this study, the developed phantom have two shape: one is the shape of semi-sphere with 10cm diameters and the other one is the flat slab of $30{\times}30cm$with 1 cm thickness. The slab phantom was used for calibration and characterization measurements of reproducibility, linearity and dose rate dependency. The semi-sphere phantom was used for angular and directional dependence on the types of MOSFETs. The measurements were conducted under $10{\times}10cm^2$ fields at 100cm SSD with 6MV photon of Clinac (21EX, Varian, USA). For calibration and reproducibility, five standard MOSFETS and microMOSFETs were repeatedly Irradiated by 200cGy five times. The average calibration factor was a range of $1.09{\pm}0.01{\sim}1.12{\pm}0.02mV/cGy$ for standard MOSFETS and $2.81{\pm}0.03{\sim}2.85{\pm}0.04 mV/cGy$ for microMOSFETs. The response of reproducibility in the two types of MOSFETS was found to be maximum 2% variation. Dose linearity was evaluated In the range of 5 to 600 cGy and showed good linear response with $R^2$ value of 0.997 and 0.999. The dose rate dependence of standard MOSFET and microMOSFET was within 1% for 200 cGy from 100 to 500MU/min. For linearity, reproducibility and calibration factor, two types of MOSFETS showed similar results. On the other hand, the standard MOSFET and microMOSFET were found to be remarkable difference in angular and directional dependence. The measured angular dependence of standard MOSFET and microMOSFET was also found to be the variation of 13%, 10% and standard deviation of ${\pm}4.4%,\;{\pm}2.1%$. The directional dependence was found to be the variation of 5%, 2% and standard deviation of ${\pm}2.1%,\;{\pm}1.5%$. Therefore, dose verification of radiation therapy used multidirectional X-ray beam treatments allows for better the use of microMOSFET which has a reduced angular and directional dependence than that of standard MOSFET.

  • PDF

Applicability of Current Design Code to Class B Splice of SD600 Re-Bars (SD600 철근의 B급 겹침 이음에 대한 현행설계기준의 적용성)

  • Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.449-459
    • /
    • 2011
  • An experimental study was performed to evaluate the applicability of current design code to the class B splice of SD600 reinforcing bars. Twelve simply supported beam and slab specimens with re-bar splices were tested under monotonic loading. Parameters for this test were re-bar diameter, concrete cover thickness, concrete strength, and stirrup spacing. Concrete strengths ranged 24.7~55.3 MPa. Most of the specimens were designed to satisfy the class B splice length specified by current design code. Average bar stresses resulting from this test were compared with the predictions by the KCI code provisions. Based on the result, the applicability of the current design code to SD600 re-bars were evaluated. The re-bar splices gave satisfactory performance for all D13 re-bar splices and for D22 and D32 splices with transverse reinforcement. On the basis of the test result, for D22 and the greater diameter bars, the use of either transverse reinforcement of the thicker concrete cover was recommended.

Calculation of Maximum Effective Temperature of Steel Box Girder Bridge Using Artificial Neural Network (인공신경망을 이용한 강박스거더의 유효온도 산정)

  • Lee, Seong- Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.96-103
    • /
    • 2018
  • An analysis using a statistical method is generally used to determine the effective temperature based on the temperature design load of a bridge. In this study, the effective temperature was calculated by building an artificial neural network (ANN) capable of improving the statistical method. A Steel box girder bridge specimen was made with a width of 2.0 m, height of 2.0 m, and length of 3.0 m and 0.2 m the upper slab. Twenty one temperature gauges were attached to measure the temperature between 2014 and 2016 for three years. An ANN was learned using the data measured from 2014~2015 and the results were compared with the Euro codes. The error rate between the Euro code and statistical analysis values was analyzed to be 4.1 % for the total measurement point. The ANN was verified and the effective bridge temperatures were calculated using the temperature data measured in 2016. The results revealed an approximate 3.97 % difference from the statistical analysis values. This degree of error is considered to be acceptable in terms of engineering for the analysis of an ANN. An ANN can easily predict the effective temperature of a bridge by knowing the input values of the region's highest temperature, bridge type, and upper asphalt thickness when designing the bridge's temperature loads.

Suggestion, Design, and Evaluation of a New Modified Double Tee Slabs (새로운 개량 더블티 슬래브의 제안, 설계 및 평가)

  • Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.809-820
    • /
    • 2008
  • A new modified full scale double tee slabs with the length of nib plate - 1,500 mm were suggested, designed, and experimentally evaluated up to the loading of flexural failure. This slabs were composed of the tee section which was same to original PCI double tee and the plate section which was modified in a new shape, and the prestressing force was applied at the bottom of tee section only. This specimens were made from the domestic precast factory. The safety and serviceability of the modified nib plate with the dapped ends were evaluated up to the ultimate flexural strength of tee section. As the experimental loading increased, the flexural crackings developed first in the bottom of the slab and they changed to the increased flexural shear and inclined shear crackings in the nib and dapped portion of the double tees. The suggested modified double tee slabs failed in ductile above the design loading with many evenly distributed flexural crackings. The thickness of nib plate - 250 mm does not show any cracking under the service loading and show several minor flexural cracking up to the ultimate state of tee portion. The proposed specimens were satisfied with the strength and ductility requirements in the design code provisions in the tests. Additional experimental tests are required to reduce the depth and tensile reinforcement of nib plate concrete for the practical use of this system effectively.

Evaluation of the Secondary Particle Effect in Inhomogeneous Media for Proton Therapy Using Geant4 Based MC Simulation (Geant4 몬테칼로 시뮬레이션을 활용한 불균질 매질에서의 양성자의 이차입자 영향 분석)

  • Park, So-Hyun;Jung, Won-Gyun;Rah, Jeong-Eun;Park, Sung-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.311-322
    • /
    • 2010
  • In proton therapy, the analysis of secondary particles is important due to delivered dose outside the target volume and thus increased potential risk for the development of secondary cancer. The purpose of this study is to analyze the influence of secondary particles from proton beams on fluence and energy deposition in the presence of inhomogeneous material by using Geant4 simulation toolkit. The inhomogeneity was modeled with the condition that the adipose tissue, bone and lung equivalent slab with thickness of 2 cm were inserted at 30% (Plateau region) and 80% (Bragg peak region) dose points of maximum dose in Bragg curve. The energy of proton was varied with 100, 130, 160 and 190 MeV for energy dependency. The results for secondary particles were presented for the fluence and deposited energy of secondary particles at inhomogeneous condition. Our study demonstrates that the fluence of secondary particles is neither influenced insertion of inhomogeneties nor the energy of initial proton, while there is a little effect by material density. The deposited energy of secondary particles has a difference in the position placed inhomogeneous materials. In the Plateau region, deposited energy of secondary particles mostly depends on the density of inserted materials. Deposited energy in the Bragg region, in otherwise, is influenced by both density of inserted material and initial energy of proton beams. Our results suggest a possibility of prediction about the distribution of secondary particles within complex heterogeneity.

Economic Evaluation on Geosynthetic Reinforced Abutment for Railways (토목섬유로 보강된 철도교대의 경제성 평가)

  • Kim, Dae Sang;Kim, Ung-Jin;Sung, Keun-Yeol;Kim, Hak-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.508-517
    • /
    • 2018
  • This study evaluated the construction costs of 11 design cases to decrease the horizontal forces applied to an abutment. They include two kinds of abutment types, which are used to improve the backfill materials for reversed T-shaped abutment and geosynthehtic reinforced abutment for railways (RAR). In the first economic analysis, the internal friction angles of the backfill materials were increased from ${\Phi}=35^{\circ}$ to ${\Phi}=40^{\circ}$ and $50^{\circ}$ for a reversed T-shaped abutment. The second analysis examined cases with the design of a geosynthehtic RAR. When the friction angles were $40^{\circ}$ or $50^{\circ}$ after improvement of the backfill material, the reduction in the construction cost of the abutment was not as large (2.0-3.9%), even though the horizontal forces on the abutment were decreased by 18-48%. However, in the case of applying the RAR, a maximum cost reduction of 30% was achieved by decreasing the horizontal force to zero. The cost reduction results from the decreased wall thickness, base slab size, and the number of pile foundations for the abutment, as well as changing the material.

Clinical Utility of Turbo Contrase-Enhanced MR Angiography for the Major Branches of the Aortic Arch (대동맥궁 주요 분지들의 고속 조영증강 자기공명혈관조영술의 임상적 유용성)

  • Su Ok Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Purpose : To assess the clinical utility of turbo contrast-enhanced magnetic resonance angiography(CE MRA) in the evaluation of the aortic arch and its major branches and to compare the image quality of CE MRA among different coils used. Materials and Methods : Turbo three-phase dynamic CE MRA encompassing aortic arch and its major branches was prospectively performed after manual bolus IV injection of contrast material in 29 patients with suspected cerebrovascular diseases at 1.0T MR unit. the raw data were obtained with 3-D FISH sequence (TR 5.4ms, TE 2.3ms, flip angle 30, slab thickness 80nm, effective slice thickness 4.0mm, matrix size $100{\times}256$, FOV 280mm). Total data acquisition time was 4. to 60 seconds. We subjectively evaluated the imge quality with three-rating scheme : "good" for unequivocal normal finding, "fair" for relatively satisfactory quality to diagnose 'normal' despite intravascular low signal, and "poor" for equivocal diagnosis or non-visualization of the origin or segment of the vessels due to low signal or artifacts which needs catheter angiography. At the level of the carotid bifurcation, it was compared with conventional 2D-TOF MRA image. Overall image quality was also compared visually and quantitatively by measuring signal-to-noise ratios (SNRs) of the ascending aorta, the innominate artery and both common carotid arteries among the three different coils used(CP body array(n=12), CP neck array(n=9), and head-and-neck(n=8). Results : Demonstration of the aortic arch and its major branches was rated as "good" in 55% (16/29) and "fair" in 34%(10/29). At the level of the carotid bifurcation, image quality of turbo CE MRA was same as or better than conventional 2D-TOF MRA in 65% (17/26). Overall image quality and SNR were significantlygreater with CP body array coil than with CP neck array or head-and-neck coil. Conclusions : Turbo CE MRA can be used as a screening exam in the evaluation of the major branches of the aortic arch from their origin to the skull base. Overall imagequality appears to be better with CP body array coil than with CP neck array coil or head-and-neck coil.

  • PDF

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.