• 제목/요약/키워드: slab panels

검색결과 42건 처리시간 0.028초

PSC Beam의 박스형 보강 시 이차합성을 고려한 신뢰성해석 (A Reliability Analysis considering the Second Composite Effect in the To-Box Reinforcement of Deteriorated PSC Beam Bridge)

  • 한성호;조창주;방명석;신재철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.400-407
    • /
    • 2005
  • The reinforcing effect of modified structure of PSC beams is analyzed in this study. The PSC beams are closed by precast half panels embeding PS tendons at the bottom flange of I-bear The stiffness of box structure is larger and the PS force at half panels makes a time-dependent upward camber of superstructures. The superstructure becomes a second composite structure among 3 elements-PSC ben RC slab, PSC Panel. The time-dependent creep and shrinkage effect at PSC Panels and structural behavior is verified considering construction sequences. The optimal range of to-box reinforcing method is surveyed through reliability analysis.

  • PDF

I 형강 합성바닥판의 정적성능 평가 (Experimental Evaluation for Static Performance of I-Beam Concrete Slab System)

  • 정영수;박창규;김용곤;이원표
    • 콘크리트학회논문집
    • /
    • 제13권5호
    • /
    • pp.430-437
    • /
    • 2001
  • 최근 교량상 통과하중의 증대 및 교통량증대로 공용중의 교량의 바닥판은 가혹한 하중하에서 펀칭등의 파괴가 발생하여 사용상에 중대한 영향을 미치고 있는 실정이다. 이로 인한 바닥의 보수나 교체공사등이 급격히 증가되어 신속 간편하며, 보수시 교통통제를 최소화 할 수 있고 또한 신뢰성이 있는 바닥판 시공법이 필요하게 되었다. 따라서 본 연구의 목적은 교량구조물 바닥판의 신설/교체공사에 있어서 신속한 시공과 신뢰성 있는 품질관리, 교통통제의 최소화를 위해 공장 또는 제작장에서 바닥판 구조물의 주부재로서 I형강을 배치하고 거푸집(저판)을 조립하여 패널을 제작한 후 현장에서는 패널의 설치 및 연결부에 콘크리트를 타설하여 바닥판을 시공하는 공법을 개발하는데 그 목적이 있다. 따라서 본 연구에서는 I형강 합성바닥판 개발에 필요한 I형강 자체의 역학적, 구조적 특성에 대하여 기초적인 물성 실험인 정적. 피로성능 실험을 수행하였으며, I형강 합성바닥판 및 유사한 성능의 바닥판 시험체를 제작하여 정적실험을 수행 비교하였다. 그리고 본 실험 연구 결과 I형강 합성바닥판의 우수성을 확인하였다.

복합재료 샌드위치 판의 고유 진동수에 대한 탄성보의 영향 (The Influence on Elastic Beam for Natural Frequency of Composite Sandwich Plate)

  • 이봉학;원치문;이정호;김성환
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.191-197
    • /
    • 1997
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

Splitting of reinforced concrete panels under concentrated loads

  • Foster, Stephen J.;Rogowsky, David M.
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.803-815
    • /
    • 1997
  • It is well understood that concentrated forces applied in the plane of a beam or panel (such as a wall or slab) lead to splitting forces developing within a disturbed region forming beyond the bearing zone. In a linearly elastic material the length of the disturbed region is approximately equal to the depth of the member. In concrete structures, however, the length of the disturbed region is a function of the orthotropic properties of the concrete-steel composite. In the detailing of steel reinforcement within the disturbed regions two limit states must be satisfied; strength and serviceability (in this case the serviceability requirement being acceptable crack widths). If the design requires large redistribution of stresses, the member may perform poorly at service and/or overload. In this paper the results of a plane stress finite element investigation of concentrated loads on reinforced concrete panels are presented. Two cases are examined (i) panels loaded concentrically, and (ii) panels loaded eccentrically. The numerical investigation suggests that the bursting force distribution is substantially different from that calculated using elastic design methods currently used in some codes of practice. The optimum solution for a uniformly reinforced bursting region was found to be with the reinforcement distributed from approximately 0.2 times the effective depth of the member ($0.2D_e$) to between $1.2D_e$ and $1.6D_e$. Strut and tie models based on the finite element analyses are proposed herein.

아스팔트 콘크리트 궤도용 사전제작형 슬래브 패널 개발 (Development of Prefabricated Slab Panel for Asphalt Concrete Track)

  • 백인혁;이성혁;신응수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권3호
    • /
    • pp.75-82
    • /
    • 2019
  • 아스팔트 콘크리트(AC) 궤도는 열차 하중에 의한 궤도 하부노반의 발생응력을 최소화하고, 적외선에 민감한 AC의 노출면적을 감소시켜 온도 영향에 따른 AC 도상의 소성변형을 줄일 수 있는 슬래브 패널 개발이 매우 중요하다. 본 연구에서는 형상 설계 및 실내성능시험을 통해 AC 궤도용 슬래브 패널을 개발하였으며, KRL-2012 표준열차하중 모델 및 KR-C코드에 의한 다양한 정적 하중조합에 따른 슬래브 패널에 작용하는 휨 인장응력 및 설계모멘트를 유한요소해석을 통해 구조 안전성을 검토하였다. 또한 AC 궤도용 슬래브 패널의 설계 적합성을 검증하기 위하여, EN 13230-2에 의거 슬래브 패널 주요 위치별로 정적 휨 강도 시험, 동적 휨 강도 시험을 수행하였다. 성능 시험 결과, AC 궤도용 슬래브 패널은 균열 하중 및 균열 확대 여부 등 유럽 표준에서 요구되는 성능 기준을 모두 만족하였다.

Precast Concrete Panel을 사용한 슬라브궤도 시험시공에 대한 평가 (Evaluation for the Test Installation of Slab Track by Using Precast Concrete Panels)

  • 김순철;공선용;강정옥;이종민;한광섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1071-1077
    • /
    • 2004
  • This paper is presenting the performance evaluation on the installed concrete panels. As a result of the evaluation, the resistance to track displacement of temporary support structure was improved and it resulted in the improvement of work stability during installation. And, by the application of new technology and the saving of concrete consumption, both workability and cost were improved and, therefore, the shorter project period and cost saving can be expected. Furthermore, as a result of noise & vibration measurement at site, it has shown good effects of anti-noise and anti-vibration. In conclusion, this process was proved as very effective for track improvement.

  • PDF

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

연속슬래브교량의 고유진동해석에 대한 수치모형 (Numerical Modeling of Reinforced Concrete Bridge Panels for Vibration Analysis)

  • 박제선;심도식;이정호;정경일
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.205-211
    • /
    • 1997
  • The problem of deteriorated highway concrete slab is very serious all over the world. Before making any decision on repair work, reliable non-destructive evaluation is necessary. One of the dependable methods is to evaluate the in-situ stiffness of the slab by means of obtaining the natural frequency. By comparing the in-situ stiffness with the one obtained at the design stage, the degree of damage can be estimated rather accurately. In this paper, the numerical modeling of vibration analysis to three span continuous reinforced concrete bridge with elastic intermediate support is presented.

  • PDF

Design approach for a FRP structural formwork based steel-free modular bridge system

  • Cheng, Lijuan;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.561-584
    • /
    • 2006
  • The paper presents results of parametric studies, and an overall approach for the design of a modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate important relationships between critical configurational parameters and empirical equations based on numerical studies are presented. Results are discussed at the level of the individual deck and girder components, and as a slab-on-girder bridge system. An overall design methodology for the components and bridge system including critical performance checks is also presented.

Finite element investigation of the joints in precast concrete pavement

  • Sadeghi, Vahid;Hesami, Saeid
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.547-557
    • /
    • 2018
  • This paper measures the mechanical response of precast pavement joints under moving axle loads using the finite-element method, and the models were validated with results of field tests. In order to increase the ability to use the non-linear FE analysis for design and assessment of precast pavement subjected to moving axle load, this paper investigated the effects of different load transfer between the slabs using the ABAQUS finite-element package to solve the nonlinear explicit model equations. The assembly of the panels using dowels and groove-tongue keys has been studied to assess the efficiency of keyway joint system. Concrete damage plasticity model was used to calculate the effects of permanent damages related to the failure mechanisms. With aggregate interlock as the only load transferring system, Load transfer efficiency (LTE) is not acceptable when the axle load reaches to slab joints. The Finite-element modelling (FEM) results showed that keyway joints significantly reduced tensile stresses developed at the mid-slab. Increasing the thickness of the tongue the LTE was improved but with increasing the height of the tongue the LTE was decreased. Stresses are transferred to the adjacent slab efficiently when dowels are embedded within the model. When the axle load approaches joints, tensile damage occurs sooner than compressive damage, but the damage rate remains constant, then compressive damage increases significantly and become the major form of distress under the dowels.