• Title/Summary/Keyword: slab formwork

Search Result 45, Processing Time 0.026 seconds

The Process for Development of the Optimum Layout Model in Slab Formwork of High-rise Building Construction (초고층 건축공사의 바닥거푸집 최적배치 모델 구축 프로세스 연구)

  • Cha, Minsoo;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.171-172
    • /
    • 2011
  • Formwork accounts for a large proportion of the framework in high-rise construction projects in terms of the duration and cost. Especially, slab formwork has a significant influence on these factors. However, the current selection of formwork method in general contractors depends on the decisions of few experienced engineers, and layout planning of the formwork in specialty contractors requires lots of time by different floor types. As a preliminary study for developing an optimum layout model in slab formwork of high-rise building construction, this study proposes the process of the optimum layout model and determines a fitness function for use of the genetic algorithm aimed at table formwork.

  • PDF

Formwork Productivity Analysis Model for Cost-efficient Equipment Operations

  • Hyunsu Lim;Taehoon Kim;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.226-230
    • /
    • 2013
  • In the tall building construction, the slab formwork largely impacts on construction cost. Because productivity of a slab formwork is influenced by a number of and the efficiency of equipment, using the equipment-based construction method, an appropriate equipment input planning is crucial for the productivity. Meanwhile, the general equipment input planning is conducted by intuition based on experience due to the lack of equipment productivity data. Thus, this study develop a simulation model to analyze table formwork productivity and to propose an optimum equipment input plan that reflects the construction process, based on the full consideration of the economic factors. This study developed a simulation model by using CYCLONE and the data for the model was collected by measuring the duration of each unit activity in the tall building where table forms were applied. It is expected that a simulation model helps users to make better decision on the equipment input planning of slab formwork.

  • PDF

A Study on the Buckling Characteristics of Pipe Support(V6) (파이프서포트(V6)의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.59-62
    • /
    • 2011
  • Among the accidents and failures that occur during concrete construction, many are formwork failures which usually happen when concrete is being placed. A system of formwork filled with wet concrete has its weight at the top and is not basically a stable structure. Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable shores. In construction site, pipe supports are usually used as a shore of slab formwork. In this study, pipe support systems with/without horizontal connector were measured by buckling test. Buckling load of respective pipe support system was analyzed by structural analysis program(MIDAS). Buckling load of pipe support with/without horizontal connector was got by test and structural analysis. According to these results, we know that horizontal connector made pipe support system very safe. Buckling load of pipe support with horizontal connector is 56% higher than that without horizontal connector. So horizontal connector is important in slab formwork systems. Finally, the present study results will be used to design slab formwork system safely in the construction sites.

A Study on the Strength Comparison of Steel Pipe Support using the Structural Analysis Program (구조해석에 의한 파이프서포트의 내력비교에 관한 연구)

  • Paik, Shin-Won;Park, Jong-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.67-71
    • /
    • 2008
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Slab formwork consists of sheathing, stringer, hanger and shore. In construction site, pipe supports are usually used as shores which are consisted of the slab formwork. In this study, compressive strength of 80 pipe supports was measured by knife edge test and plate test. Buckling load of pipe supports was analyzed by structural analysis program(MlDAS). Theoretical buckling load with/without initial deformation was got by theoretical analysis. According to these results, buckling load which was analyzed by structural analysis program(MlDAS) was larger than compressive strength of knife edge test and plate test. Theoretical buckling load without initial deformation was larger than compressive strength of knife edge test and plate test. But Theoretical buckling load with initial deformation was lower than compressive strength of knife edge test and plate test. Initial deformation equation for test method according to the pipe support length was suggested. Therefore, the present study results will be used to design the slab formwork safely.

The Productivity Analysis by Slab Formwork of Structural Frame Work in Tall Building Construction (초고층 골조공사의 바닥 거푸집별 생산성 분석;기준층 3일 공정을 중심으로)

  • Kim, Tae-Hoon;Shin, Yoon-Seok;Cho, Seong-Soo;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.115-118
    • /
    • 2007
  • A tall building construction is needed to reduce the construction duration for project profitability. Reducing the cycle time of typical floor in the structural frame work which have the largest duration in the whole construction, greatly affects construction duration. Nowadays, some projects are accomplished in the 3 day cycle. In order to accomplish efficiently 3 day cycle, productivity information of similar projects is supported. Therefore, this study proposed labor productivity and application by slab formwork to construct by the 3 day cycle. In order to perform an analysis, we selected 3 cases and analyzed the labor productivity on the basis of the amount of slab forms, labors, and durations. Then, we performed the questionnaire to analyze the application by formwork of tall building construction engineers. This study will contribute to establish a reasonable scheduling in structural frame work of a new similar project.

  • PDF

DEVELOPMENT AND APPLICATION OF SUBSTRUCTURE NON SUPPORTING FORMWORK FOR TOP-DOWN CONSTRUCTION

  • Mee-Ra Jeong;Hong-Chul Rhim;Doo-Hyun Kang;Kwang-Jun Yoo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.788-793
    • /
    • 2009
  • Constructing substructures by using Top-Down or Downward method needs an efficient formwork system because of difficulties in supporting concrete slabs from the bottom while excavation is in process. Existing underground formwork systems can be classified by three types: graded ground supported type (Slab On Grade, Beam On Grade), suspension type (Non Supporting Top Down Method), and bracket supported type (Bracket Supported R/C Downward). Each method has its own advantages and limits. Application of a specific formwork system for a given construction site is determined by various conditions and affect construction time and cost. This paper presents a newly developed underground non-supporting formwork system, which combines the advantages of a suspension type and a bracket supported type while it overcomes limits of two types. The developed system has a moving formwork which is supported by suspension cables hanging from the bracket placed at the top of pre-installed substructure columns. Then, the moving formwork is repeatedly lowered down for the next floor below to support concrete slab during curing. The details of this bracket and cable supported system have been investigated for the improvement of easiness in construction.

  • PDF

A Study on the Strength Change of Used Pipe Support (1) (재사용 파이프서포트의 내력변화 연구 (1))

  • Paik, Shin-Won;Ro, Min-Lae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable individual shores. In constructions site, pipe supports are usually used as shores. The strength of a pipe support is decreasing as it is frequently being used at the construction site. In this study, 2857 pipe supports were bought to fine out the strength change of used pipe support and unused pipe supports according to aging. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports almost equaled to the strength of new pipe supports until 191 days, but the strength of used pipe supports at 191 days was lower than the strength of new pipe supports. So, the strength of used pipe supports at 191 days was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the paresent study results will be able to provide a firm base to design slab formwork and test the performance of used temporary structure and prevent formwork collapses.

Development of One-way Void Support Device for Flexible Table Form (가변형 테이블폼용 일방향 중공관 지지장치 개발)

  • Kwon, Woobin;Lee, Dongmin;Lee, Changsu;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.12-13
    • /
    • 2019
  • Flexible Table Form is being used more frequently at the level of formwork in construction site. However, one of the most common structural frameworks, the RC column-beam structure, is having problems in these factors. To improve this problems, this study developed support devices and proposed installation specifications to enable application of the one-way void slab method to flexible table form. It is expected that the effects of reducing the self-weight of the slab in the floor slab construction using flexible table form.

  • PDF

A new developed approach for EDL induced from a single concentrated force

  • Bekiroglu, Serkan;Arslan, Guray;Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1105-1119
    • /
    • 2016
  • In this study, it is presented that a new developed approach for equivalent area-distributed loading (EADL) induced from a single concentrated force. For the purpose, a full scale 3D steel formwork system was constructed in laboratory conditions. A developed load transmission platform was put on the formwork system and loaded step by step on the mass center. After each load increment, displacement was measured in several crictical points of the system. The developed platform which was put in to slab of formwork to equivalently distribute the load from a point to the whole slab was constituted using I profiles. A 3D finite element model of the formwork system was analyzed to compare numerical displacement results with experimental ones. In experimental tests,difference among the displacements obtained from reference numerical model (model applied EADL) and main numerical model (model applied single load using a load cell via load transmission platform) is about %13 in avarage. Difference among the displacements obtained from experimental results and main numerical model under 30 kN single load is about %11 in avarage. The results revealed that the displacements obtained experimentally and numerically are dramatically closed to each other. It is highlighted from the study that the developed approach is reliable and useful to get EDL.

Development of Opened Slab Method for Top-Down Construction (지하역타공법용 개방형 슬래브 개발)

  • Song, Jee-Yun;Rhim, Hong-Chul;Kang, Doo-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.43-46
    • /
    • 2008
  • In Top-Down construction for underground structures, the placement of slab as a horizontal supporting member against lateral earth pressure is an important process in determining construction time and cost. Usually, a reinforced concrete perimeter girder distributes concentrated lateral loads from earth retaining structures such as Cast-in-place (CIP) piles. By combining the function of the R/C perimeter girder and horizontal slabs, the Opened Slab Method is efficient for reducing construction time by elimination of time-consuming formwork for traditional perimeter girders. The structural performance of the method is also discussed in this paper.

  • PDF