• Title/Summary/Keyword: slab bridges

Search Result 251, Processing Time 0.024 seconds

A Study on Applicability and External / Internal Stability of true MSEW abutment with slab (순수형 보강토교대의 슬래브교에 대한 적용성 및 외적/내적 안정성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, the applicability and external/internal stability of a MSEW abutment with a slab were investigated. Structural analysis of slab bridges between 10 ~ 20.0 m and thicknesses of 0.7 ~ 0.9 m was carried out to calculate the reaction forces due to dead and live loads acting on the bridge supports. The slab bridge with a length of 20.0 m satisfied the allowable contact pressure of 200 kPa for the true MSEW abutment. Because the external stability of the true MSEW abutment was dominated by the geometry of the MSE wall, the change in the factor of safety due to the load of the super-structure is small. Because the stiffness of the foundations is fixed and the load of the super-structure is increased, the factor of safety of the bearing capacity was reduced. As the load of the super-structure was increased, the horizontal earth pressure of the true MSEW abutment increased greatly. As a result, the pullout and fracture of the uppermost reinforcement, which are the factors of safety, did not meet the design criteria. Therefore, it is necessary to increase the pullout resistance and the long-term allowable tensile force of the reinforcement placed on the top of the reinforced soils to ensure efficient design and performance of a true MSEW abutment.

A Review of the Deterioration and Damage of the Top Flange of the Highway PSC Box Girder Bridge based on the Condition Assessment Results (상태평가 결과 기반 고속도로 PSC Box 거더교 상부플랜지 열화·손상 실태 고찰)

  • Ku, Young-Ho;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.23-32
    • /
    • 2022
  • Although PSCB girder bridges account for 4% of the bridges in use on highways, they do not account for much, but 98% of PSCB girder bridges are 1st type and 2nd type of bridge. Also, the total length of the PSCB girder bridge is 16% (192km) of the total length of the highway bridge. Thus, the PSCB girder bridge can be one of the bridge types where maintenance is important. In order to analyze the damage types of PSCB girder bridges, a detailed analysis was conducted by selecting 62 places (477 spans) precision safety diagnosis reports considering ratio of the construction method and snow removal environment exposure class. Analysis of report and a field investigation was conducted, and as a result, most of the causes of deterioration damage were caused by rainwater (salt water) flowing into the bridge pavement soaking in between the top flange and the interface. After concrete slab deteriorate occurred then bridge pavement cracking and breaking increased and exfoliation of concrete occurred by corrosion and expansion of the reinforcing bars occurred. In addition, the cause of cracks in the longitudinal direction on the bottom of the top flange is considered to be cracks caused by restrained drying shrinkage. In conclusion, for reasonable maintenance considering the characteristics of PSCB girder bridges, it should be suggested in the design aspect that restrained drying shrinkage crack on top flange. Also, it is believed that differentiated maintenance method should be proposed according to snow removal environment exposure class.

Experiments on Shear Connections of PSC Girders with Prefabricated Slabs

  • Shim Chang-Su;Chung Chul-Hun;Hyun Byung-Hak;Kim Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.573-579
    • /
    • 2004
  • For the fast construction and replacement of bridges in urban area, a prefabricated bridge system can be an excellent alternative. Details of prefabricated slabs for PSC girders were developed and static tests on shear connections were conducted to propose design equations of the shear connection. Stirrups and stud connectors were used as shear connectors and non-shrink mortar was used for the filling material in shear pockets for shear connectors. Stirrups and studs were fabricated to insert embedded nut-type devices in PSC girders. Shear strength of the shear connection considering chemical bond, friction and mechanical connectors was evaluated and empirical equations were suggested. Due to the mechanical connectors, ultimate slip capacity of the shear connection was sufficient for shear load redistribution, and suggested details of the shear connection showed good performance in terms of strength and ductility.

A Development of the Trapped Water Drainage System to Prevent the Deterioration of Deck Slab and Pavement. (교면 포장 및 바닥판 손상 방지를 위한 내부 침투수 처리시스템 개발)

  • 조서연;한범성;이상달;이성수;이상순;이일용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1175-1180
    • /
    • 2001
  • Reinforced concrete deck slabs are directly affected by traffic loads and they are also susceptible to weather-related problems, such as cracking, reinforcement corrosion, spatting, scaling, delamination, leakage, efflorescence and so on. Some of these defects are caused by water which seeps through pavements and trapped between pavements and deck slabs. For durability of reinforced concrete deck slabs and pavements, it is very important to protect deck slabs and drain the trapped water out. To develop the trapped water drainage system, the following studies have been performed in Korea Highway Cooperation: related researches are reviewed; for six bridges, deck slabs are thoroughly investigated; new system to effectively drain the trapped water out is proposed; the proposed system is installed and evaluated. The proposed system is proved to be effective to drain the trapped water out and is expected to increase the durability of reinforced concrete deck slabs.

  • PDF

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.

A Study of Net Type External Prestress Strengthening Method for Slab Bridges (슬래브교 네트형 외부강선 보강 공법의 실험적 연구)

  • Han, Man-Yup;Shin, Jae-Woo;Kang, Tae-Heon;Jin, Kyung-Suk;Kang, Sang-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.266-269
    • /
    • 2006
  • External pre-stressing strengthening method is the most popular way to strengthen concrete structures because of its efficiency and economic advantage. The laboratory test was performed to reinforce the slave bridge with the external tendon strengthening by longitudinally and transversally, which is concerned with formal feature of slave bridge, generally. Based on this test, anchoring device to strengthen the external tendon strengthening method was established and its strengthening effects were verified by evaluating the load bearing capacity.

  • PDF

Dynamic Analysis of I-Type Girder Bridge with HEMU Train Load (I형 거더교의 동력분산형 하중에 대한 동적해석)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1279-1286
    • /
    • 2010
  • This paper deals with the influence on the dynamic response of I-type girder railway bridge with high-speed electric multiple unit(HEMU) train load. This bridge system which has six I-girder and several cross beams, is modeled with plate and frame elements. And the upper slab is assumed to be fully connected with girders using rigid rinks. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional section of bridge models was produced by the assumed design wheel loads of HEMU vehicle at 200~350 km/hr speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 30 and 35 m span length were investigated and compared with the limit values specified in various national railway bridge specifications.

  • PDF

Development of a New Design Theory for Incrementally Prestressed Concrete Girder (프리스트레스를 단계적으로 도입하는 IPC 거더의 설계 이론 연구)

  • 한만엽;김진근;이차돈;박준범
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.121-130
    • /
    • 2000
  • Current engineering practice in determining sectional dimensions of prestressed concrete (PSC) girders for bridges is primarily based on the code-specified allowable concrete stresses at different loading stages. It is customary that tendons and sectional dimensions are calibrated and tendon forces are applied at once at the initial stage to keep the subsequent stresses occurring at different loading stages within the allowable stresses. This traditional tensioning method, however, usually results in a too conservative sectional depth in view of ultimate capacity of a girder. A new design method which can realize the reduction of sectional depth of PSC girders is theoretically suggested in this study. Tendons are tensioned twice at different loading stages: the initial stage and the stage after fresh slab concrete is cast. It can be shown that according to this technique, sectional depth can be significantly reduced and larger span can be realized compared to traditional ones. Parametric studies are performed with due considerations given to its practical applications.

Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1237-1257
    • /
    • 2016
  • The paper concerns analysis of effects of shrinkage of slab concrete in a steel-concrete composite deck of a through truss bridge span. Attention is paid to the shrinkage alongside the span, i.e., transverse to steel-concrete composite cross-beams. So far this aspect has not been given much attention in spite of the fact that it affects not only steel-concrete decks of bridges but also steel-concrete floors of steel frame building structures. For the problem analysis a two-dimensional model is created. An analytical method is presented in detail. A set of linear equations is built to compute axial forces in members of truss girder flange and transverse shear forces in steel-concrete composite beams. Finally a case study is shown: test loading of twin railway truss bridge spans is described, verified FEM model of the spans is presented and computational results of FEM and the analytical method are compared. Conclusions concerning applicability of the presented analytical method to practical design are drawn. The presented analytical method provides satisfactory accuracy of results in comparison with the verified FEM model.

An Experimental Study of Fastening System for Vertical Directions (체결장치의 수직 방향에 대한 실험적 연구)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1312-1319
    • /
    • 2006
  • Several countries including Korea, Japan and European countries have reached the stage of planning, constructing their high-speed railway systems. High-speed train will become a key tool for intercity passenger transportation. Before that, safety of high-speed train must be secured. It is connected directly with track. The track is composed of ballast, tie, fastening and rail. Also, the fastening system makes tie and rail connect. In this case of the railway bridges used concrete slab track, the deflection of the bridge cause uplife of the rail at the areas between segments. In the structural analysis about it, stiffness of the fastening systems has been assumed. Therefore, use of the stiffness according to an experimental study needs. In this study, the stiffness values of various types of fastening systems are determined by the experiment and the structural behavior of fastening system is analyzed.

  • PDF