• Title/Summary/Keyword: skyhook control

Search Result 78, Processing Time 0.029 seconds

Fuzzy Hybrid Control of a Smart TMD for Reduction of Wind Responses in a Tall Building (초고층건물의 풍응답제어를 위한 스마트 TMD의 퍼지 하이브리드제어)

  • Kim, Han-Sang;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • Fuzzy hybrid control technique with a smart tuned mass damper(STMD) was proposed in this study for the suppression of wind-induced motion of a tall building. To develop the effective control algorithm for a STMD, skyhook and groundhook control algorithms were employed. Usually, skyhook controller can effectively reduce STMD motion and groundhook controller shows good control performance for the reduction of building responses. In this study, fuzzy hybrid controller, which can determine an optimal weighting factor for combining two controllers in real time, was developed to improve the control performance of conventional hybrid controller using weighted sum approach. A 76-story office building was used as an example structure to investigate the performance of the proposed controller. A magnetorheological(MR) damper was used to develop a STMD and the control performance of STMD was evaluated comparing with the passive and active TMD. The numerical studies show that the control effectiveness of a STMD is significantly superior to that of the conventional TMD. It is also shown that fuzzy hybrid controller can effectively adjust skyhook and groundhook control algorithms and reduce both responses of STMD and building.

A Study on The Vibration Attenuation of a Driver Seat Using an MR fluid Damper

  • Park, Chan-Ho;Ahn, Byeong-Il;Jeon, Do-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.6-111
    • /
    • 2001
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to conventional seats. The system locates between a seat cushion and base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system. The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

  • PDF

Investigation of the semi-active electromagnetic damper

  • Montazeri-Gh, Morteza;Kavianipour, Omid
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.419-434
    • /
    • 2014
  • In this paper, the electromagnetic damper (EMD), which is composed of a permanent-magnet rotary DC motor, a ball screw and a nut, is considered to be analyzed as a semi-active damper. The main objective pursued in the paper is to study the two degrees of freedom (DOF) model of the semi-active electromagnetic suspension system (SAEMSS) performance and energy regeneration controlled by on-off and continuous damping control strategies. The nonlinear equations of the SAEMSS must therefore be extracted. The effects of the EMD characteristics on ride comfort, handling performance and road holding for the passive electromagnetic suspension system (PEMSS) are first analyzed and damping control strategies effects on the SAEMSS performance and energy regeneration are investigated next. The results obtained from the simulation show that the SAEMSS provides better performance and more energy regeneration than the PEMSS. Moreover, the results reveal that the on-off hybrid control strategy leads to better performance in comparison with the continuous skyhook control strategy, however, the energy regeneration of the continuous skyhook control strategy is more than that of the on-off hybrid control strategy (except for on-off skyhook control strategy).

Design of A Controller for Vehicle Active Suspensions Considering Driving Conditions (주행 상황을 고려한 차량 능동 현가장치 제어기 설계)

  • Cheon Jong-Min;Lee Jong-Moo;Kwon Soonman;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.698-704
    • /
    • 2005
  • Passive suspensions with fixed design constants are very restrictive in the inherent suspension problem, the trade-off between the ride quality and the suspension travel. Active suspensions are used to solve some drawbacks of passive suspensions. In this paper, we propose a controller design for vehicle active suspensions considering variable driving conditions. Our controller estimates the current driving conditions by detecting the road frequencies gotten from Fourier Transform and decides which factor must be emphasized between the ride quality and the suspension travel. In one case of focusing on the ride quality, we use the skyhook control law and in the other case of focusing on the suspension travel, the double skyhook control law is used. The control law modified by various road situations outputs the reference force value the electro-hydraulic actuator in active suspension system must generate. To track the reference force, we adopt the sliding control law which is very useful in controlling the nonlinear system like the electro-hydraulic actuator.

Vibration Control of a Drive Feeding System Using ER CD-ROM Mounts (ER CD-ROM 마운트를 이용한 드라이브 피딩 시스템의 진동 제어)

  • 최승복;김형규;임수철;박영필
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1247-1258
    • /
    • 1999
  • This paper presents vibration control of a CD-ROM(compact disc-read only memory) drive feeding system consisting of a new type of CD-ROM mount using an electro-rheologocal(ER) fluid. Chemically treated starch particles and silicon oil are used for EF fluid, and its field-dependent yield stresses are experimentally distilled under both the shear and the flow modes. On the basis of the yield stress, an appropriate size of ER CD-ROM mount adapted to conventional feeding system is designed and manufactured. Vibration isolation performance of the proposed mount is evaluated in the frequency domain and compared with that of conventional rubber mount. The ER CD-ROM mount is then installed to the drive feeding system and the system equation of motion is derived. The skyhook controller is then incorporated with the fuzzy technique to improve the performance of ER CD-ROM mount. A set of fuzzy parameters and control rules are obtained from a relation between vertical displacement and pitching motion of the feedng system. Followingthe formulation of the fuzzy-skyhook controller, computer simulation is undertaken in order to evaluate vibration suppression of the CD-ROM drive feeding system subjected to various excitations.

  • PDF

Hybrid Control of Active Suspension System Considering Hydraulic System Dynamics (유압계의 동특성을 고려한 능동 현가계의 합성 제어)

  • 김효준;박혁성;양현석;박영필
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.239-246
    • /
    • 1997
  • This paper presents an active suspension control algorithm to improve the suspension performance trade-offs between riding comfort and handling stability. In this paper, a hybrid control scheme is proposed, the idea of which is that sliding mode control is used for nonlinear hydraulic system and the skyhook control is applied to control the vehicle behavior. The parameter variations in hydraulic system are considered for the robust controller design. The performance of the proposed control method is evaluated by simulation and experiments based on a half car roll model which can reveal both heave and roll behavior.

  • PDF

Active Vibration Control of a Beam using Direct Velocity Feedback (직접속도 피드백을 이용한 보의 능동진동제어)

  • 이영섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.587-592
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair, because the sensor-actuator pair has strictly positive real (SPR) property. In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB sho robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a 'skyhook' damper, but the point sensor-distributed actuator pair with DVFB acts as a 'skyhook' rotational dmaper pair.ational dmaper pair.

  • PDF

Active Vibration Control of a Beam Using Direct Velocity Feedback (보의 능동진동제어을 통한 직접속도 피드백의 적용성 연구)

  • 이영섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.619-625
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair. because the sensor-actuator pair has strictly positive real (SPR) property In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a Point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB show robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a “skyhook” damper, hut the point sensor-distributed actuator pair with DVFB acts as a “skyhook” rotational damper pair.